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Summary

This work introduces a neural network methodology for developing QSTR predictors of toxicity to Vibrio fischeri. The method
adopts the Radial Basis Function (RBF) architecture and the fuzzy means training strategy, which is fast and repetitive, in
contrast to most traditional training techniques. The data set that was utilized consisted of 39 organic compounds and their
corresponding toxicity values to Vibrio fischeri, while lipophilicity, equalized electronegativity and one topological index were
used to provide input information to the models. The performance and predictive ability of the RBF model were illustrated
through external validation and various statistical tests. The proposed methodology can be used to successfully model toxicity
to Vibrio fischeri for a heterogeneous set of compounds.

1. Introduction

Toxicology deals with the quantitative assessment of the toxic
effects to organisms in relation to the level, duration and fre-
quency of exposure. In general, exposure to toxic substances
is to be avoided and thus toxicity assessment of such com-
pounds is vital [1]. Among the bacterial assays, the Vibrio
fischeri luminescence inhibition assay is the most popular.
Bioluminescent bacteria toxicity tests offer a convenient, sen-
sitive and efficient ethical alternative to testing on higher
species [2, 3].

As the experimental determination of toxicological prop-
erties is a costly and time consuming process, it is essential
to develop mathematical predictive relationships to theoret-
ically quantify toxicity [4, 5]. Quantitative Structure – Tox-
icity Relationship (QSTR) studies can provide a useful tool
for achieving this goal, that is predicting the toxic potency
of untested compounds [6, 7].Apart from serving as predic-
tors of ecological and human health effects, QSTRs are also
utilized in the process of designing safer chemicals for com-
mercial use. The use of toxicity data from Vibrio fischeri tests
in the development of QSTRs is adopted in several publica-
tions [8–11].

For the formal description of relationships between activ-
ity measures and structural descriptors of compounds var-
ious statistical techniques can be used. Among them, the
most popular are Multiple Linear Regression (MLR) [12–14]
and Partial Least Squares (PLS) [7]. Several other statistical
techniques have been used for the same purpose, including
discriminant analysis, principal component analysis (PCA)
and factor analysis, cluster analysis, multivariate analysis,
and adaptive least squares [5, 15]. Neural Network (NN)
techniques have also been applied successfully in devel-
oping quantitative structure-activity relationships [16–20].
NNs have gained attention due to their ability to describe
non-linear relationships with success.

The objective of this work was to investigate the poten-
tial of using a special neural network architecture, namely
the Radial Basis Function (RBF) networks in the develop-
ment of a QSTR model for predicting toxicity of compounds
to Vibrio fischeri. More specifically, a recently introduced
training methodology for generating Radial Basis Function
(RBF) neural networks was utilized. The method uses the in-
novative fuzzy means clustering technique to determine the
number and the locations of the hidden node centers [21].
The most significant advantages of this method compared to



214

traditional RBF network training techniques are the follow-
ing: it is much faster since it does not involve any iterative
procedure, utilizes only one tuning parameter and it is repet-
itive, i.e. it does not depend on an initial random selection of
centers. The methodology was applied on a set of 39 com-
pounds and resulted in the development of a successful QSTR
model involving only three descriptors that can predict toxic-
ity with significant accuracy. The produced model was com-
pared to QSTRs produced by more conventional modelling
techniques, such as Multiple Linear Regression (MLR) and
the popular Feedforward Neural Network (FNN) architec-
ture. Various statistical validation techniques illustrated the
efficiency of the proposed method.

2. Materials and methods

The proposed methodology was applied on a data set of het-
erogeneous compounds that are characterized by a narcotic
mode of action. The data were taken from the literature [22].
The set is of high quality, since all data were derived from the
same endpoint and protocol and were measured in the same
laboratory at the Institute of Soil Science, Academia Sinica,
Najing [23].

2.1. Data Set

As mentioned above, the toxicity data to Vibrio fischeri for the
39 compounds that constituted our data base were obtained
from the literature [22]. The toxicities in terms of pEC50

(log(1/LC50) are presented in Table 1.

2.2. Descriptors

Three descriptors that give a statistically significant model
were collected from the literature and used as input features
in the data set, namely log P as a measure of lipophilicity
of the compound, equalized electronegativity χeq and the

topological index 1χν which represent the structure of the
molecule. In general, all these descriptors are simple and
relatively easy to calculate [24, 25].

The first order valence-connectivity index 1χν used in this
work is representative of the molecule’s size, shape, branch-
ing, symmetry and heterogenicity and was previously used
in QSARs with success [22, 26].

The equalized electronegativity χeq which accounts for
the electronegativity effect of the substituents has also proved
to play a dominant role and improve the QSTR models [22,
27]. Charge conservation equation leads to the following
expression:

χeq = N

/ ∑
(V/χ ) (1)

where N = total number of atoms in the species, V is the
number of atoms of a particular element in the species and χ

is the electronegativity of that element.

Finally, the addition of lipophilicity in terms of log P was
found to improve considerably the efficiency of the produced
models. The log P values of the 39 compounds were taken
from the literature [23]. A number of studies have been per-
formed on the relationship between the toxicity and chemical
structure using log P. These studies indicate that lipophilic-
ity has emerged as a key parameter for assessing toxicity
[28, 29].

2.3. Statistical analysis

In this section we present the basic characteristics of the RBF
neural network architecture and the training method that was
used to develop the QSTR neural network models.

2.3.1. RBF network topology and node characteristics
RBF networks consist of three layers: the input layer, the hid-
den layer and the output layer. The input layer collects the
input information and formulates the input vector x. The hid-
den layer consists of L hidden nodes, which apply nonlinear
transformations to the input vector. The output layer delivers
the neural network responses to the environment. A typical
hidden node l in an RBF network is described by a vectorx̂l ,
equal in dimension to the input vector and a scalar width σ l .
The activity νl (x) of the node is calculated as the Euclidean
norm of the difference between the input vector and the node
center and is given by:

vl (x) = ‖x − x̂l‖ (2)

The response of the hidden node is determined by pass-
ing the activity through the radially symmetric Gaussian
function:

fl (x) = exp

(
−vl (x)2

σ 2
l

)
(3)

Finally, the output values of the network are computed as
linear combinations of the hidden layer responses:

ŷ = g(x) =
L∑

l=1

fl (x)wl (4)

where[w1,w2, . . . , wL ] is the vector of weights, which multi-
ply the hidden node responses in order to calculate the output
of the network.

2.3.2. RBF Network Training Methodology
Training methodologies for the RBF network architecture
are based on a set of input-output training pairs (x(k); y(k))
(k = 1, 2, . . . , K ). The training procedure used in this work
consists of three distinct phases:

(i) Selection of the network structure and calculation of the
hidden node centers using the fuzzy means clustering al-
gorithm [21]. The algorithm is based on a fuzzy partition
of the input space, which is produced by defining a num-
ber of triangular fuzzy sets on the domain of each input
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variable. The centers of these fuzzy sets produce a multi-
dimensional grid on the input space. A rigorous selection
algorithm chooses the most appropriate knots of the grid,
which are used as hidden node centers in the produced
RBF network model. The idea behind the selection al-
gorithm is to place the centers in the multidimensional
input space, so that there is a minimum distance between
the center locations. At the same time the algorithm as-
sures that for any input example in the training set there
is at least one selected hidden node that is close enough
according to a distance criterion. It must be emphasized
that opposed to both the k-means [30] and the c-means
clustering [31] algorithms, the fuzzy means technique
does not need the number of clusters to be fixed before
the execution of the method. Moreover, due to the fact
that it is a one-pass algorithm, it is extremely fast even if
a large database of input-output examples is available.
Furthermore, the fuzzy means algorithm needs only one
tuning parameter, which is the number of fuzzy sets that
are utilized to partition each input dimension.

(ii) Following the determination of the hidden node cen-
ters, the widths of the Gaussian activation function are
calculated using the p-nearest neighbour heuristic[32]:

σl =
(

1

p

p∑
i=1

‖x̂l − x̂i‖2

)1/2

(5)

where x̂1, x̂2,. . . , x̂p are the p nearest node centers
to the hidden node l. The parameter p is selected, so
that many nodes are activated when an input vector is
presented to the neural network model.

(iii) The connection weights are determined using linear
regression between the hidden layer responses and the
corresponding output training set.

2.4. Model validation

2.4.1. Cross – validation technique
In order to explore the reliability of the proposed method
we used the leave one-out (LOO) and the leave more-out
(LMO) cross – validation method [33]. Prediction error sum
of squares (PRESS) is a standard index to measure the accu-
racy of a modeling method based on the LOO cross-validation
technique for a number of available examples n. Based on the
PRESS and SSY (Sum of squares of deviations of the experi-
mental values from their mean) statistics, the Q2 and SPRESS

values can be easily calculated. The formulae used to cal-
culate all the aforementioned statistics are presented below
(Equations (6) and (7):

Q2 = 1 − PRESS

SSY
= 1 −

∑n
i=1 (yexp−ypred)2∑n

i=1 (yexp−ȳ)2
(6)

SPRESS =
√

PRESS

n
(7)

2.4.2. Estimation of the predictive ability of the QSTR model
According to Tropsha et al. [34] the predictive power of a
QSAR model can be conveniently estimated by an external
R2

CVext (Equation (8)).

R2
CVext = 1 −

∑test
i=1 (yexp−ypred)2∑test

i=1 (yexp−ȳtr)2
(8)

where ȳtr is the averaged value for the dependent variable on
the training set.

Furthermore Tropsha et al. [34–36] considered a QSAR
model predictive, if the following conditions are satisfied:

R2
CVext > 0.5 (9)

R2
pred > 0.6 (10)(
R2

pred − R2
o
)

R2
pred

< 0.1 or

(
R2

pred − R
′2
o

)
R2

pred

< 0.1

(11)

0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15 (12)

Mathematical definitions of R2
o,R

′2
o , k and k′are based on

regression of the observed activities against predicted ac-
tivities and the opposite (regression of the predicted activi-
ties against observed activities). The definitions are presented
clearly in ref. (35) and are not repeated here for brevity.

2.4.3. Y-Randomization test
This technique ensures the robustness of the QSPR model
[34, 37]. The dependent variable vector (toxicity) is randomly
shuffled and a new QSAR model is developed using the orig-
inal independent variable matrix. The new QSAR models
(after several repetitions) are expected to have low R2 and
R2

cv values. If the opposite happens then an acceptable QSAR
model cannot be obtained for the specific modeling method
and data.

3. Results and discussion

In order to explore the predictive ability of the proposed RBF
model, the data set was initially split into a training and a
validation set in a ratio of 75%:25% (29 and 10 compounds
respectively). The data set was partitioned in a way that we
obtained a representative training set and at the same time a di-
verse test set in terms of molecular structure. The compounds
in the dataset included chlorobenzenes, nitrobenzenes, ani-
lines, phenols and others. From each group, we selected at
least one representative structure in the test set. The selection
was also based on the values of the output parameters so that
a wide range of toxicity values was included in both sets.
The distribution of the toxicity values for the test set follows
the distribution of the toxicity values for the training set. For
example, the majority of compounds exhibit toxicity in the
range between 3.00 and 5.00 pEC50 both in the training and
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Table 2. Parameters of RBF neural network model.

x1 x2 x3 σ w

1 0.40509 1.1289 0.16029 1.0791 1.1991

2 0.0050893 −0.2711 −0.039709 0.7180 0.92233

3 0.20509 −0.071104 0.16029 0.7087 −0.44248

4 0.20509 0.5289 −0.039709 0.7659 −2.0181

5 0.0050893 0.3289 −0.23971 0.7832 3.2526

6 −0.19491 0.1289 0.16029 0.6532 −3.5499

7 −0.39491 0.3289 0.36029 0.7832 3.2572

8 −0.59491 −0.071104 0.16029 0.6992 0.80551

9 0.60509 −0.4711 0.96029 1.1662 2.8863

10 −0.79491 −0.4711 −0.039709 0.8994 −0.36281

11 1.0051 0.7289 −0.23971 1.1235 1.4784

12 −0.39491 −0.4711 0.56029 0.7572 −1.8571

13 1.0051 1.1289 −0.63971 1.3920 8.9051

14 −0.39491 −0.2711 −1.0397 1.3047 1.522

15 0.60509 0.9289 −0.83971 1.2147 −6.077

16 0.20509 −0.6711 0.76029 0.9238 2.6542

17 −0.79491 −0.6711 0.56029 1.0154 2.1722

18 0.60509 −0.8711 0.36029 1.1450 −1.1002

the validation set. The training and validation compounds are
clearly indicated in Table 1.

For the development of the RBF network we scaled the
input data and used the fuzzy means procedure that was de-
scribed in subsection 2.3.2. Several models were developed
by altering the key tuning parameter in the fuzzy means
methodology, which is the number of sets that are defined
in each input dimension. The parameter p in the P-nearest
neighbour heuristic method was set to half of the number of
hidden nodes, so that multiple hidden node centers are ac-
tivated when an input example is presented to the network.
For the development of the models we used only the 29 train-
ing data. The validation set was not involved by any means
during the training phase and was used only to test the accu-
racy of the produced models. The best results were obtained
by partitioning each input dimension into 11 sets. This parti-
tion produced a network consisting of 18 hidden nodes. The
parameters of the RBF model are shown in Table 2.

In order to compare the performance of the produced RBF
network we developed more QSTR models using MLR and
the FNN architecture, based on exactly the same training
and validation data sets. For the development of the FNN
model we utilized the MATLAB neural network toolbox.
Several models were developed by altering the tuning pa-
rameters which are the number of hidden layers and the num-
ber of hidden nodes in each layer. We examined two differ-
ent nonlinear functions, namely the hyperbolic tangent sig-
moid function and the log sigmoid function. The Levenberg-
Marquardt backpropagation method was utilized as the train-
ing procedure. The best FNN model consisted of one hidden
layer containing 3 nodes and utilized the hyperbolic tangent
sigmoid function.

The development of the MLR model is very simple and
can be presented in terms of matrix algebra. Let us assume
that A is the 29×4 dimensional matrix containing the values

of the three descriptors for the 29 training compounds in the
first three columns, while the fourth column elements are all
equal to 1. If Y is the 29×1 dimensional vector containing the
target pEC50values for the training compounds, then the MLR
model coefficients are obtained by the following formula:

(AT A)−1AT Y (13)

The rest of the MLR model statistics are calculated from sta-
tistical functions, included in Microsoft Excel or MATLAB.
The MLR model that was obtained for our given training data
is the following:

pEC50 = 0.4878(±0.1963)logP + 2.2905(±1.2917)χeq

+0.4712(±0.2238)1χν − 4.0110(±3.2687)

n = 29, R2 = 0.7851, F = 30.45, Q2 = 0.6579,

SPRESS = 0.5250 (14)

The results are presented in Table 1, which contains the
predictions of the three models for both the training and the
external examples. The same results are shown in a graph-
ical format in Figures 1–3, where the experimental toxicity
is plotted against the predictions of the RBF network, the
FNN and the MLR model. In each figure the corresponding
coefficients of determination (R2-value) are presented, which
indicate a much higher correlation between experimental and
predicted values using the RBF network methodology. The
accuracies of all three models in terms of the R2

train, R2
pred

and RMS statistics are summarized in Table 3.
Based on the above results and the procedures that were

utilized for training RBF networks and FNNs we can state
that the FNN methodology is characterized by more tuning
parameters and lower prediction accuracy compared to the
RBF neural network method. Another disadvantage that has
been reported in the literature is that FNN training proce-
dures are more time consuming. This disadvantage was not
observed in this study due to the small size of the training data
set. A thorough comparison between the two neural network
architectures can be found in Ref. [38].

The results that have been presented so far clearly favour
the RBF neural network model and prompted us to further
explore the predictive ability of this particular model. In or-
der to validate the RBF model, we applied the statistical tests
described in subsection 2.4. More specifically, the proposed
RBF neural network model passed all the tests for the pre-
dictive ability (Equations (9)–(12)):

R2
CVext = 0.9641 > 0.5

R2
pred = 0.9337 > 0.6(
R2

pred − R2
o
)

R2
pred

= −0.1144 < 0.1
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Figure 1. Experimental vs predicted toxicity for the training and validation set (RBF).

Figure 2. Experimental vs predicted toxicity for the training and validation set (FNN).

or (
R2

pred − R
′2
o

)
R2

pred

= −0.1349 < 0.1

k = 0.9684 and k′ = 1.0233

For a more exhaustive testing of the predictive power
of the model, apart from the standard LOO cross-validation
technique, we applied a leave-five-out cross validation pro-
cedure. From the training set we randomly selected groups
of five compounds. Each group was left out and that group
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Figure 3. Experimental vs predicted toxicity for the training and validation set (MLR)

was predicted by the model developed from the remaining
observations. This process was carried out 20 times.

It is important that the model is quite stable to the
inclusion-exclusion of compound as indicated by the LOO
and L5O correlation coefficients and Spress values, which
are presented below:

Q2
LOO = 0.6712, SpressLOO = 0.5022

Q2
L5O = 0.7013, SpressL5O = 0.4388.

The Q2
L5O statistic was calculated as the average R2 for the

prediction subset among the 20 different runs. Standard devi-
ation of the statistic is equal to 0.1692. The results obtained
by the LOO and L5O cross validation tests illustrated once
more the quality of the obtained model.

Finally the popular randomization of response approach
was utilized to establish the RBF model robustness. Based on
this test, if all models produced by randomly shuffling the de-

Table 3. Summary of the results produced by the different methods.

Training Validation

Method set set R2
train R2

pred RMS Figure

RBF 29 29 0.9403 0.2194 1

FNN 29 29 0.8756 0.3165 2

MLR 29 29 0.7851 0.4160 3

RBF 29 10 0.9337 0.3500 1

FNN 29 10 0.8443 0.4890 2

MLR 29 10 0.8373 0.5195 3

pendent variable present high R2 or R2
CV values, then this is

the result of a chance correlation and the produced model for
the given data set is not acceptable. This was not the case for
the dataset and the methodology used in this work. Several
random shuffles of the Y vector (toxicity values) were per-
formed and the results are shown in Table 4. The low R2 and
R2

CVvalues show that the good results in our original model
are not due to a chance correlation or structural dependency
of the training set.

It is important to note that the produced QSTR model uses
only three descriptors and shows a joint use of lipophilicity
and topological indices as molecule descriptors correlates
well with the Vibrio fischeri toxicity. This is in agreement
with previous studies [22, 23]. All three descriptors are well-
established, toxicologically relevant and easy to measure.

All the training and testing procedures were imple-
mented using the MATLAB programming language. The
computational time required to build the neural network mod-
els in a Pentium IV 3GHz processor was always less than 0.2s.

Table 4. Results of the Y-randomization test

Iteration R2 R2
cv

1 0.1874 0.03

2 0.3258 0.06

3 0.3484 0.00

4 0.3571 0.00

5 0.2953 0.14

6 0.3268 0.12
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4. Conclusions

In this work we presented a novel QSTR methodology based
on the RBF neural network architecture. The method was
applied on a data set of heterogeneous compounds The RBF
neural network models were produced based on the fuzzy
means training method, which is fast and repetitive, in con-
trast to most traditional training techniques. Although a linear
QSTR model based on the same data set is also acceptable
taking into account the simplicity and ease of interpretation,
the RBF model was proven to be significantly more accurate
in terms of the R2

train, R2
pred and RMS statistics. The RBF

model also outperformed the best model obtained using the
FNN architecture. Further validation of the RBF model was
based on various evaluation criteria which illustrated that the
proposed model has a significant predictive potential.
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