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Abstract A neural network methodology based on the
radial basis function (RBF) architecture is introduced in
order to establish quantitative structure-toxicity rela-
tionship models for the prediction of toxicity. The
dataset used consists of 221 phenols and their corre-
sponding toxicity values to Tetrahymena pyriformis.
Physicochemical parameters and molecular descriptors
are used to provide input information to the models. The
performance and predictive abilities of the RBF models
are compared to standard multiple linear regression
(MLR) models. The leave-one-out cross validation
procedure and validation through an external test set
produce statistically significant R2 and RMS values for
the RBF models, which prove considerably more accu-
rate than the MLR models.

Keywords RBF architecture Æ Neural network Æ
QSTR Æ Toxicity Æ Tetrahymena pyriformis

Introduction

Toxicology deals with the quantitative assessment of
toxic effects to organisms in relation to the level, dura-
tion and frequency of exposure. Various segments of the
population come in contact with toxic chemicals due to
misuse (e.g., accidental poisoning), but also through
manufacturing, drug and food consumption. Addition-
ally, people working in various jobs (e.g., painters and
applicators of pesticides) are exposed to toxic sub-
stances. In general, exposure to toxic substances is to be
avoided [1].

As the experimental determination of toxicological
properties is a costly and time-consuming process, it is
essential to develop mathematical predictive relation-
ships to theoretically quantify toxicity [2, 3]. Quantita-
tive structure-toxicity relationship (QSTR) studies can
provide a useful tool for achieving this goal, given the
successful applications of quantitative structure-activity
relationships (QSARs) in several scientific areas, such as
pharmacology, chemistry and environmental research.
Based on a training database containing measured tox-
icity potencies of compounds and a number of molecular
descriptors, QSTRs can be used to predict the toxicity of
chemical compounds that are not included in the data-
base [4–6].

For the formal description of relationships between
activity measures and structural descriptors of com-
pounds, various statistical techniques can be used.
Among them the most frequently used are multiple lin-
ear regression (MLR) and partial least squares (PLS).
Several other statistical techniques have been used in
QSAR, including discriminant analysis, principal com-
ponent analysis (PCA) and factor analysis, cluster
analysis, multivariate analysis, and adaptive least
squares [7–9]. Neural network (NN) techniques have
also been used successfully in QSAR [10–16]. The NN
methodologies are generally used when the relationships
cannot be interpreted accurately by linear functions [17].

The goal of the present study is to determine the effi-
ciency of a newly introduced RBF training methodology
in predicting the toxicity of compounds. The methodol-
ogy uses the innovative fuzzy-means clustering technique
to determine the number and the locations of the hidden
node centres [18]. Compared to traditional training
techniques, the method employed in this work is much
faster since it does not involve any iterative procedure,
utilizes only one tuning parameter and is repetitive, i.e., it
does not depend on a random initial selection of centres.
The RBF method is applied to a data set of 221 phenols
and the results indicate that it can be used as an efficient
new technique for predicting toxicity with significant
accuracy, using appropriate descriptors as inputs.
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Materials and methods

It is essential in order to obtain a successful QSTR that
all data used as part of the training and validation
procedure are of high quality. High quality data should
derive from the same endpoint and protocol and ideally
should be measured in the same laboratory [19]. The
data set used in this study fulfills this criterion.

Toxicity data

This data set consists of 221 phenols and their corre-
sponding toxicity data to the ciliate Tetrahymena pyri-
formis in terms of log(1/IGC50) (mmol/L). The toxicity
values were taken from the literature [20] and are shown
in Table 1. The phenols are structurally heterogeneous
and represent a variety of mechanisms of toxic action.
The dataset consists of polar narcotics, weak acid
respiratory uncouplers, pro-electrophiles and soft elec-
trophiles.

Molecular descriptors

The molecular descriptors used to derive the model were
taken from the literature [20] and include the logarithm
of the octanol/water partition coefficient (log Kow),
acidity constant (pKa), the energies of the highest occu-
pied and lowest unoccupied molecular orbital (EHOMO

and ELUMO respectively) and the hydrogen bond donor
number (Nhdon). All these descriptors are related to the
toxicity effect of the compounds studied.

Statistical analysis (QSAR development)

In this section, we present the basic characteristics of the
RBF NN architecture and the training method used to
develop the QSAR NN models.

RBF network topology and node characteristics

RBF networks consist of three layers: the input layer,
the hidden layer and the output layer. The input layer
collects the input information and formulates the input
vector x. The hidden layer consists of L hidden nodes,
which apply nonlinear transformations to the input
vector. The output layer delivers the NN responses to
the environment. A typical hidden node l in an RBF
network is described by a vector x̂l; equal in dimension
to the input vector and a scalar width rl: The activity
ml(x) of the node is calculated as the Euclidean norm of
the difference between the input vector and the node
center and is given by

vlðxÞ ¼ x� x̂lk k ð1Þ

The response of the hidden node is determined by

passing the activity through the radially symmetric
Gaussian function:

flðxÞ ¼ exp � vlðxÞ2

r2
l

 !
ð2Þ

Finally, the output values of the network are computed
as linear combinations of the hidden layer responses:

ŷ ¼ gðxÞ ¼
XL

l¼1
flðxÞwl ð3Þ

where [w1, w2,... ,wL] is the vector of weights, which
multiply the hidden node responses in order to calculate
the output of the network.

RBF network training methodology

Training methodologies for the RBF network architec-
ture are based on a set of input–output training pairs
(x(k); y(k)) (k=1, 2,...,K). The training procedure used
in this work consists of three distinct phases:

(i) Selection of the network structure and calculation
of the hidden-node centers using the fuzzy-means clus-
tering algorithm [18]. The algorithm is based on a fuzzy
partition of the input space, which is produced by
defining a number of triangular fuzzy sets on the domain
of each input variable. The centers of these fuzzy sets
produce a multidimensional grid on the input space. A
rigorous selection algorithm chooses the most appro-
priate knots of the grid, which are used as hidden node
centers in the RBF network model produced. The idea
behind the selection algorithm is to place the centers in
the multidimensional input space so that there is a
minimum distance between the center locations. At the
same time, the algorithm assures that for any input
example in the training set there is at least one selected
hidden node that is close enough according to a distance
criterion. It must be emphasized that, in contrast to both
the k-means [21] and the c-means clustering [22] algo-
rithms, the fuzzy-means technique does not need the
number of clusters to be fixed before the execution of the
method. Moreover, due to the fact that it is a one-pass
algorithm, it is extremely fast even if a large database of
input–output examples is available. Furthermore, the
fuzzy-means algorithm needs only one tuning parame-
ter, which is the number of fuzzy sets that are used to
partition each input dimension.

(ii) Following the determination of the hidden-node
centers, the widths of the Gaussian activation function
are calculated using the P-nearest neighbor heuristic
[23]:

rl ¼
1

p

Xp

i¼1
x̂l � x̂ik k2

 !1=2

ð4Þ

where x̂1; x̂2; . . . ; x̂p are the p nearest-node centers to the
hidden node l. The parameter p is selected so that many
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Table 1 Predicted values [log(1/IGC50)] for the training and the test set

A/A Name log(1/IGC50) Training set Validation set

RBF R2=0.9424 MLR R2=0.6022 RBF R2=0.8824 MLR R2=0.7861

1 1,3,5-Trihydroxybenzene -1.26 -1.2577 0.4071
2 2-(tert)-Butyl-4-methylphenol 1.3 1.1624 1.2334
3 2,3,5-Trichlorophenol 2.37 2.1688 1.4111
4a 2,3,5-Trimethylphenol 0.36 0.5785 0.7671
5 2,3,6-Trimethylphenol 0.28 0.5460 0.7611
6 2,3-Dichlorophenol 1.28 1.4070 0.8046
7a 2,3-Dimethylphenol 0.12 0.2007 0.3904
8 2,4,5-Trichlorophenol 2.1 1.8325 1.5046
9 2,4,6-Tribromophenol 2.03 2.3170 1.6470
10 2,4,6-Tribromoresorcinol 1.06 1.1134 2.5259
11 2,4,6-Trichlorophenol 1.41 1.3937 1.3193
12 2,4,6-Trimethylphenol 0.28 0.3515 0.8490
13 2,4,6-Tris (dimethylaminomethyl) phenol -0.52 0.5294 0.3641
14 2,4-Dibromophenol 1.4 1.6666 1.1616
15 2,4-Dichlorophenol 1.04 1.0157 0.9485
16 2,4-Difluorophenol 0.6 0.5917 0.4491
17 2,4-Dimethylphenol 0.07 0.0467 0.4939
18a 2,5-Dichlorophenol 1.13 1.1504 0.9715
19a 2,5-Dimethylphenol 0.08 0.0996 0.3404
20 202,6-Di-(tert)-butyl-4-methylphenol 1.8 1.7939 2.3411
21 2,6-Dichloro-4-fluorophenol 0.8 0.9982 1.0697
22 2,6-Dichlorophenol 0.74 0.6177 0.7097
23 2,6-Difluorophenol 0.47 0.3470 0.1981
24 2,6-Dimethoxyphenol -0.6 0.5510 0.1055
25 2-Allylphenol 0.33 0.1816 0.3925
26a 2-Bromo-4-methylphenol 0.6 0.8483 0.8478
27 2-Bromophenol 0.33 0.5950 0.4488
28 2-Chloro-4,5-dimethylphenol 0.69 0.6884 1.0551
29 2-Chloro-5-methylphenol 0.39 0.6920 0.6840
30 2-Chlorophenol 0.18 0.3583 0.3040
31 2-Cyanophenol 0.03 0.2517 0.1132
32 2-Ethoxyphenol -0.36 0.1630 0.1940
33a 2-Ethylphenol 0.16 0.3373 0.3690
34 2-Fluorophenol 0.19 0.1022 0.0294
35a 2-Hydroxy-4,5-dimethylacetophenone 0.71 0.5292 0.7995
36 2-Hydroxy-4-methoxyacetophenone 0.55 0.3823 0.4016
37 2-Hydroxy-4-methoxybenzophenone 1.42 1.4376 1.7424
38 2-Hydroxy-5-methylacetophenone 0.31 0.3419 0.7916
39a 2-Hydroxyacetophenone 0.08 0.2318 0.3432
40 2-Hydroxybenzylalcohol -0.95 0.9364 0.5395
41 2-Hydroxyethylsalicylate -0.08 0.0845 0.5963
42 2-Isopropylphenol 0.8 0.7377 1.2005
43 2-Methoxy-4-propenylphenol 0.75 0.7445 1.2005
44 2-Methoxyphenol -0.51 0.5486 0.1344
45 2-Phenylphenol 1.09 1.1577 1.2855
46 2-(tert)-Butylphenol 1.3 1.3378 0.8191
47 3,4,5-Trimethylphenol 0.93 0.7390 0.7521
48 3,4-Dichlorophenol 1.75 1.5232 1.0530
49 3,4-Dimethylphenol 0.12 0.1552 0.4499
50 3,5-Dibromosalicylaldehyde 1.64 1.8912 1.5092
51 3,5-Dichlorophenol 1.57 1.3614 0.9657
52 3,5-Dichlorosalicylaldehyde 1.55 1.4080 1.3502
53 3,5-Diiododsalicylaldehyde 2.34 2.2079 1.6881
54 3,5-Dimethoxyphenol -0.09 0.1690 0.1163
55a 3,5-Dimethylphenol 0.11 0.3133 0.2588
56 3,5-Di-(tert)-butylphenol 1.64 1.6973 1.8331
57a 3-Acetamidophenol -0.16 0.1873 -0.1212
58a 3-Bromophenol 1.15 0.7477 0.5605
59 3-Chloro-4-fluorophenol 1.13 1.0300 0.8618
60 3-Chloro-5-methoxyphenol 0.76 0.7190 0.5070
61 3-Chlorophenol 0.87 0.7820 0.4292
62 3-Cyanophenol -0.06 0.0908 0.1710
63 3-Ethoxy-4-hydroxybenzaldehyde 0.02 -0.0307 0.6282
64 3-Ethoxy-4-methoxyphenol -0.3 0.2483 0.4874
65a 3-Ethylphenol 0.23 0.3863 0.3287
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Table 1 (contd.)

A/A Name log(1/IGC50) Training set Validation set

RBF R2=0.9424 MLR R2=0.6022 RBF R2=0.8824 MLR R2=0.7861

66 3-Fluorophenol 0.38 0.3626 0.0624
67a 3-Hydroxy-4-methoxybenzylalcohol -0.99 0.1893 0.2909
68 3-Hydroxyacetophenone -0.38 0.3606 0.2105
69a 3-Hydroxybenzaldehyde 0.09 0.0073 0.1464
70 3-Hydroxybenzoic acid -0.81 0.9606 0.5278
71a 3-Hydroxybenzylalcohol -1.04 0.7287 0.4854
72 3-Iodophenol 1.12 1.1825 0.6973
73 3-Isopropylphenol 0.61 0.5719 0.5519
74 3-Methoxyphenol -0.33 0.3633 0.0317
75 3-Phenylphenol 1.35 1.2389 1.2931
76a 3-(tert)-Butylphenol 0.73 0.9910 0.7758
77 4-(tert)-Octylphenol 2.1 2.0342 1.9128
78a 4-(tert)-Butylphenol 0.91 0.9333 0.8211
79 4,6-Dichlororesorcinol 0.97 0.9034 0.9385
80a 4-Allyl-2-methoxyphenol 0.42 0.2407 0.5247
81 4-Benzyloxyphenol 1.04 1.0458 1.2864
82a 4-Bromo-2,6-dichlorophenol 1.78 1.7768 1.3813
83 4-Bromo-2,6-dimethylphenol 1.17 1.3217 1.2670
84 4-Bromo-3,5-dimethylphenol 1.27 1.1912 1.2015
85 4-Bromo-6-chloro-2-cresol 1.28 1.4570 1.3406
86 4-Bromophenol 0.68 0.6965 0.6116
87a 4-Butoxyphenol 0.7 0.7779 1.0973
88 4-Chloro-2-isopropyl-5-methylphenol 1.85 1.7646 1.7180
89a 4-Chloro-2-methylphenol 0.7 0.8504 0.8675
90a 4-Chloro-3,5-dimethylphenol 1.2 1.2333 1.1467
91a 4-Chloro-3-ethylphenol 1.08 1.2658 1.1233
92 4-Chloro-3-methylphenol 0.8 0.7377 0.8344
93a 4-Chlorophenol 0.55 0.5155 0.5212
94 4-Chlororesorcinol 0.13 0.5804 0.4712
95 4-Cyanophenol 0.52 0.3434 0.0974
96 4-Ethoxyphenol 0.01 -0.1385 0.5105
97 4-Ethylphenol 0.21 0.3014 0.3981
98 4-Fluorophenol 0.02 -0.0708 0.2526
99 4-Heptyloxyphenol 2.03 2.1227 1.9979
100 4-Hexyloxyphenol 1.64 1.5630 1.6922
101a 4-Hexylresorcinol 1.80 1.5525 1.4144
102 4-Hydroxy-2-methylacetophenone 0.19 0.1939 0.4472
103 4-Hydroxy-3-methoxyacetophenone -0.12 0.1004 0.3638
104 4-Hydroxy-3-methoxybenzonitrile -0.03 0.0216 0.4072
105 4-Hydroxy-3-methoxybenzylalcohol -0.7 0.8639 0.4295
106 4-Hydroxy-3-methoxybenzylamine -0.97 0.2649 -0.3264
107a 4-Hydroxy-3-methoxyphenethylalcohol -0.18 0.1069 0.1330
108 4-Hydroxyacetophenone -0.3 0.0234 0.1133
109 4-Hydroxybenzaldehyde 0.27 -0.0006 0.1058
110 4-Hydroxybenzamide -0.78 0.6458 0.3673
111 4-Hydroxybenzoic acid -1.02 0.8670 0.3948
112 4-Hydroxybenzophenone 1.02 1.0913 1.1405
113 4-Hydroxybenzylcyanide -0.38 0.3997 0.4804
114a 4-Hydroxyphenethylalcohol -0.83 0.6590 0.4298
115 4-Hydroxyphenylacetic acid -1.5 1.5063 0.2107
116a 4-Hydroxypropiophenone 0.05 0.3086 0.4059
117 4-Iodophenol 0.85 0.95 0.7254
118a 4-Isopropylphenol 0.47 0.6119 0.6148
119 4-Methoxyphenol -0.14 0.3372 0.1976
120a 4-Phenylphenol 1.39 1.2357 1.4480
121a 4-Propylphenol 0.64 0.7181 0.7046
122 4-(sec)-Butylphenol 0.98 1.0932 0.9117
123 4-(tert)-Pentylphenol 1.23 1.3335 1.1356
124 5-Bromo-2-hydroxybenzylalcohol 0.34 0.4247 0.3608
125 5-Bromovanillin 0.62 0.6049 0.7279
126 5-Fluoro-2-hydroxyacetophenone 0.04 0.0517 0.7771
127 5-Methylresorcinol -0.39 0.4360 0.1271
128 5-Pentylresorcinol 1.31 1.3376 1.3020
129 6-(tert)-Butyl-2,4-dimethylphenol 1.16 1.1801 1.5907
130 a,a,a-Trifluoro-4-cresol 0.62 0.6807 0.5816
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Table 1 (contd.)

A/A Name log(1/IGC50) Training set Validation set

RBF R2=0.9424 MLR R2=0.6022 RBF R2=0.8824 MLR R2=0.7861

131 Ethyl-3-hydroxybenzoate 0.48 0.5352 0.7593
132 Ethyl-4-hydroxy-3-methoxyphenylacetate 0.23 0.0891 0.2439
133a Ethyl-4-hydroxybenzoate 0.57 0.7127 0.6494
134 Isovanillin 0.14 0.2235 0.3669
135a 3-Cresol -0.06 0.0257 0.0559
136a Methyl-3-hydroxybenzoate 0.05 0.2478 0.4859
137 Methyl-4-hydroxybenzoate 0.08 0.2095 0.4817
138a Methyl-4-methoxysalicylate 0.62 0.6075 0.6973
139 Nonylphenol 2.47 2.4674 2.4774
140a 2-Cresol -0.3 0.1056 0.0954
141a 2-Vanillin 0.38 0.1732 0.4571
142a 4-Cresol -0.18 0.1592 0.2252
143 4-Cyclopentylphenol 1.29 1.2381 0.9981
144 Phenol 0.21 0.1106 0.3004
145 Resorscinol 0.65 0.6311 0.2009
146 Salicylaldehyde 0.42 0.4010 0.2986
147 Salicylaldoxime 0.25 0.1620 0.3740
148 Salicylamide 0.24 0.3046 0.0554
149 Salicylhydrazide 0.18 0.1825 0.1927
150 Salicylhydroxamic acid 0.38 0.3768 0.2226
151 Salicylic acid 0.51 0.5072 0.7902
152 Syringaldehyde 0.17 0.1762 0.3455
153 Vanillin 0.03 0.0114 0.3303
154 2,3,4,5-Tetrachlorophenol 2.71 2.6883 1.8520
155 2,3,5,6-Tetrachlorophenol 2.22 2.2198 1.6755
156 2,3,5,6-Tetrafluorophenol 1.17 1.2825 0.6360
157 2,3-Dinitrophenol 0.46 0.5685 0.7861
158 2,4,6-Trinitrophenol -0.16 0.1587 0.4653
159 2,4-Dichloro-6-nitrophenol 1.75 1.8195 1.7045
160 2,4-Dinitrophenol 1.08 0.9775 0.5527
161 2,5-Dinitrophenol 0.95 0.9357 1.0017
162 2,6-Dichloro-4-nitrophenol 0.63 0.6967 1.1545
163 2,6-Diiodo-4-nitrophenol 1.71 1.7308 1.6515
164 2,6-Dinitro-4-cresol 1.23 1.0951 1.17
165 2,6-Dinitrophenol 0.54 0.6098 0.6845
166 3,4,5,6-Tetrabromo-2-cresol 2.57 2.5622 2.4724
167 3,4-Dinitrophenol 0.27 0.2449 0.6613
168 4,6-Dinitro-2-cresol 1.72 1.8385 0.9805
169 Pentabromophenol 2.66 2.6674 2.5129
170 Pentachlorophenol 2.05 2.0362 2.1188
171 Pentafluorophenol 1.64 1.5253 0.9301
172 1,2,3-Trihydroxybenzene 0.85 0.3641 -0.4575
173 1,2,4-Trihydroxybenzene 0.44 0.4386 0.1186
174 2,3-Dimethylhydroquinone 1.41 2.1983 0.4201
175 2,4-Diaminophenol 0.13 0.1296 -0.1773
176 2-Amino-4-(tert)-butylphenol 0.37 0.3471 1.0426
177 2-Aminophenol 0.94 1.0797 0.0342
178 3,5-Di-(tert)-butylcatechol 2.11 2.1032 2.1321
179 3-Aminophenol -0.52 0.6763 0.4105
180 3-Methylcatechol 0.28 0.3889 0.2381
181 4-Acetamidophenol -0.82 0.1854 0.0424
182 4-Amino-2,3-dimethylphenol 1.44 1.3920 0.0618
183 4-Amino-2-cresol 1.31 1.2952 0.2362
184 4-Aminophenol -0.08 0.0292 0.0845
185 4-Chlorocatechol 1.06 0.8653 0.7061
186a 4-Methylcatechol 0.37 0.6642 0.2757
187 5-Amino-2-methoxyphenol 0.45 0.4527 -0.1456
188 5-Chloro-2-hydroxyaniline 0.78 0.7809 0.7450
189 6-Amino-2,4-dimethylphenol 0.89 0.9603 0.4623
190 Bromohydroquinone 1.68 1.7439 0.8086
191a Catechol 0.75 0.2268 -0.0938
192 Chlorohydroquinone 1.26 0.8143 0.3379
193 Hydroquinone 0.47 0.3551 -0.0659
194 Methoxyhydroquinone 2.20 0.8448 -0.0157
195 Methylhydroquinone 1.86 1.5627 0.2166
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nodes are activated when an input vector is presented to
the NN model.

(iii) The connection weights are determined using
linear regression between the hidden-layer responses and
the corresponding output training set.

Results

In order to evaluate and compare the performance of the
RBF training methodology presented in this work, the
data set was initially split into a training and a validation
set in a ratio of approximately 80:20% (180 and 41
compounds, respectively). For that, the Kennard and
Stones algorithm [24] was used. The Kennard–Stones
algorithm has gained increasing popularity for splitting
data sets into two subsets. The algorithm starts by
finding two samples that are the farthest apart from each
other on the basis of the input variables in terms of some
metric, e.g., the Euclidean distance. These two samples
are removed from the original data set and put into the
calibration data set. The procedure described is repeated
until the desired number of samples has been reached in
the calibration set. The advantages of this algorithm are
that the calibration samples map the measured region of
the variable space completely with respect to the induced
metric and that the test samples all fall inside the mea-
sured region. The training and validation compounds
are clearly indicated in Table 1. Both RBF network and
MLR models were developed based on exactly the same

training set. The validation set was not involved in any
way during the training phase. The results are shown in
Table 1, where the predictions of the two models are
shown for both the training and the external examples.
The same results are shown in a graphical format in
Figs. 1, 2, 3 and 4, where the experimental toxicity is
plotted against the predictions of the RBF network and
the MLR model. In each figure the corresponding
coefficients of determination (R2-value) are presented,
which indicate a much higher correlation between
experimental and predicted values using the RBF net-
work methodology. The full linear equation for the
prediction of toxicity is the following:

log1=IGC50¼0:5617logKowþ0:0026pKa�0:8792ELUMO

þ0:7995EHUMOþ0:2734Nhdonþ6:2044;
n¼180; R2¼0:6022; RMS¼0:5352:

ð5Þ

To compare the performance of the modeling
schemes further, their predictive ability was also evalu-
ated by the leave-one-out (LOO) cross-validation pro-
cedure. A number of modified data sets were created by
deleting in each case one object from the data. An RBF
network and an MLR model were developed in each
case based on the remaining data and were validated
using the object that had been deleted. Consequently,
221 RBF networks and MLR models were built, by
deleting each time one compound from the training set.

Table 1 (contd.)

A/A Name log(1/IGC50) Training set Validation set

RBF R2=0.9424 MLR R2=0.6022 RBF R2=0.8824 MLR R2=0.7861

196 Phenylhydroquinone 2.01 2.0494 1.4188
197 Tetrachlorocatechol 1.700 1.6398 2.3871
198 Trimethylhydroquinone 1.34 1.0404 0.7284
199 2,6-Dibromo-4-nitrophenol 1.36 1.2960 1.3558
200 2-Amino-4-chloro-5-nitrophenol 1.17 1.1656 1.3096
201 2-Amino-4-nitrophenol 0.48 0.5334 1.0231
202 2-Chloro-4-nitrophenol 1.59 1.4875 0.8898
203 2-Chloromethyl-4-nitrophenol 0.75 1.0330 0.7947
204 2-Nitrophenol 0.67 0.8831 0.6586
205 2-Nitroresorcinol 0.66 0.6898 1.1367
206a 3-Fluoro-4-nitrophenol 0.94 0.3165 0.9997 0.4381
207 3-Hydroxy-4-nitrobenzaldehyde 0.27 0.3165 0.6154
208 3-Methyl-4-nitrophenol 1.73 1.3591 0.6877
209 3-Nitrophenol 0.51 0.4308 0.6024
210 4-Amino-2-nitrophenol 0.88 0.8491 1.0359
211 4-Chloro-2-nitrophenol 2.05 2.0047 1.3347
212 4-Chloro-6-nitro-3-cresol 1.64 1.5944 1.6378
213 4-Hydroxy-3-nitrobenzaldehyde 0.61 0.6226 0.4118
214 4-Methyl-2-nitrophenol 0.57 0.6544 1.1031
215 4-Methyl-3-nitrophenol 0.74 0.7122 1.0180
216 4-Nitro-3-(trifluoromethyl)-phenol 1.65 1.5893 1.0526
217 4-Nitrocatechol 1.17 1.1431 0.9175
218 4-Nitrophenol 1.42 1.4467 0.4263
219 4-Nitrosophenol 0.65 0.5828 0.3104
220 5-Fluoro-2-nitrophenol 1.13 1.2294 0.7792
221 5-Hydroxy-2-nitrobenzaldehyde 0.33 0.1427 0.5858

aCompounds used in the validation set
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Figures 5 and 6 show the experimental toxicity versus
the predictions produced by the RBF NN models and
the multiple regression technique, using the LOO cross
validation procedure. The corresponding coefficients of
determination R2

CV indicate again that the models de-
rived from the RBF methodology have a higher pre-
dictive potential. The comparison between the RBF and
the MLR methods is summarized in Table 2. In all
cases, the RBF models proved to be remarkably more
accurate than the MLR models. The predictive abilities
of both modeling techniques can be improved if different
models are developed for each one of the several dif-
ferent mechanisms of action, but in this paper we con-
centrated on building a single model for each
methodology that can predict toxicity for the variety of
mechanisms that are included in the data set.

It should finally be noted that the MATLAB pro-
gramming language was used to implement all the
training and testing procedures. The computational time
required to build the NN models in a Pentium IV 3 GHz
processor was always less than 0.2 s. It should also be
emphasized that the RBF training method has been
developed in-house, so no commercial packages were
used to develop the NN models. The complete QSTR
models can be made available to the interested readers.

Discussion and conclusions

In this work, we presented a novel QSTR methodology
based on the RBF NN architecture. The method was
illustrated using a data set of 221 phenols and compared
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with standard MLR. Validation of the different QSTR
methodologies was based on two evaluation procedures.
In the first method the data were split into a training and
a validation set and the model generated using the
training set was used to predict toxicity in the validation
set. The second method was the standard LOO cross-

validation procedure. The modeling procedures used in
this work illustrated the accuracy of the models pro-
duced, not only by calculating their fitness on sets of
training data but also by testing the predicting abilities
of the models.

The RBF NN models were produced based on the
fuzzy-means training method, which is fast and repeti-
tive, in contrast to most traditional training techniques.
The model generated for the data set required five de-
scriptors. In terms of the R2, R2

cv and RMS values, the
RBF models proved to have a significant predictive
potential. The results obtained illustrated that the RBF
NN architecture can be used to derive QSTRs, which are
more accurate and have better generalization capabili-
ties compared to linear regression models at the expense
of the increased complexity of the model compared to a
simple structure of a linear model. The method proposed
could be a substitute to costly and time-consuming
experiments for determining toxicity.
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