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Abstract A novel QSAR workflow is constructed that com-
bines MLR with LS-SVM classification techniques for the
identification of quinazolinone analogs as “active” or “non-
active” CXCR3 antagonists. The accuracy of the LS-SVM
classification technique for the training set and test was 100%
and 90%, respectively. For the “active” analogs a validated
MLR QSAR model estimates accurately their I-IP10 IC50

inhibition values. The accuracy of the QSAR model
(R2 = 0.80) is illustrated using various evaluation techniques,
such as leave-one-out procedure (R2

LOO = 0.67) and vali-
dation through an external test set (R2

pred = 0.78). The key
conclusion of this study is that the selected molecular descrip-
tors, Highest Occupied Molecular Orbital energy (HOMO),
Principal Moment of Inertia along X and Y axes PMIX and
PMIZ, Polar Surface Area (PSA), Presence of triple bond
(PTrplBnd), and Kier shape descriptor (1κ), demonstrate dis-
criminatory and pharmacophore abilities.
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Introduction

Recent reports from several major pharmaceutical compa-
nies indicate that there is significant interest in the iden-
tification of small-molecule antagonists of CXCR3 [1,2].
CXCR3 and its ligands Mig (CXCL9), IP-10 (CXCL10), and
ITAC (CXCL11) have been involved in a variety of inflamma-
tory diseases such as rheumatoid arthritis, multiple sclerosis,
inflammatory bowel diseases [2,3]. Recently the quinazoline
analogs [4,5] were identified as promising functional antago-
nists of CXCR3 that could be developed into new therapeutic
agents for the treatment of inflammatory disorders.

In the past, several attempts have been made to build
QSAR models in the general field of chemokine antagonists
such as CCR5 [6–8], CCR2 [9,10], CXCR2 [11], and CXCR4
[12]. Previously, we reported the first QSAR study concern-
ing small-molecule antagonists of CXCR3 [13].

In this work we show that a combination of ES-SWR (For-
ward Selection & Backward Elimination)–Multiple Linear
Regression (MLR) QSAR modeling [14] and Least Squares-
Support Vector Machines (LS-SVM) classification techni-
ques [15] can contribute greatly to building a workflow with
a double role. Firstly, discriminate compounds into two cate-
gories (threshold IC50 = 790 nM), “actives” (IC50 range: 0.8–
790 nM), and “non-actives” (IC50 range: 1,370–25,000 nM),
and secondly, accurately estimate the 125I-IP10 IC50 values
for the active small molecules.

Materials and methods

In this computational study, 55 novel CXCR3 antagonists
(quinazolinone analogs) were collected from Medina et al.’s
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Table 1 Dataset (amide moiety)
and model predictions using
LS-SVM

a Test set
b Misclassified compound

N

N

O

N

R N(Me)2

F

Id R I-IP10 IC50 (nM)
(experimental)

I-IP10
log(1/IC50)
(experimental)

Class threshold
(IC50 790 nM)

Predicted
class

1 –CO · (CH2)8CH3 146 −2.16 Active
2 –CO · (CH2)10CH3 154 −2.19 Active
3a −CO · (CH2)6CH3 375 −2.57 Active Non-activeb

4 –CO · (CH2)4CH3 10,000 −4.00 Non-active
5 –(CH2)8CH3 710 −2.85 Active
6 –(CH2)7CH3 790 −2.90 Active
7 –S(O)2(CH2)9CH3 587 −2.77 Active
8a −S(O)2(CH2)7CH3 1,400 −3.15 Non-active Activeb

9 –CO · CH2Ph–4–Ph 75 −1.88 Active
10 –CO · Ph–4–Ph 10,000 −4.00 Non-active
11a −CO · CH2Ph 10,000 −4.00 Non-active Non-active
12 –CO · CH2Ph–4–CH3 10,000 −4.00 Non-active
13 –CO · CH2Ph–4–CF3 88 −1.95 Active
14 –CO · CH2Ph–4–OCF3 156 −2.19 Active

[4,5] recently published work (Tables 1–6). Before the cal-
culation of the molecular descriptors, the chemical structures
were fully optimized using PM6 [16,17], which provided a
balance between computational speed and accuracy. A recent
paper [18] highlighted the quality of QSPR models obtained
by PM6 method as similar to that of models based on B3LYP
(Density Functional Theory). Then approximately 200 phys-
icochemical constants, topological and structural molecular
descriptors, were calculated using Chem3D [19], Topix [20],
MOPAC2007 [21], and ROCS & EON [22]. For the develop-
ment of the workflow the available small molecules were sep-
arated (55 quinazolinone analogs) into two independent sets,
“actives” and “non-actives.” The cutoff value for the dis-
crimination of “actives” and “non-actives” was set to IC50 =
790 nM. The separation of the dataset into training and val-
idation sets was performed according to the popular Ken-
nard and Stones algorithm [23–25]. The algorithm starts by
finding two samples that are the farthest apart from each other
on the basis of the input variables in terms of some metric,
e.g., the Euclidean distance. These two samples are removed
from the original dataset and put into the calibration dataset.
The procedure described is repeated until the desired num-
ber of samples has been reached in the calibration set. The

advantage of the specific algorithm was that the calibration
samples mapped the measured region of the input variable
space completely with respect to the induced metric and that
the test samples all fell inside the measured region. A com-
monly used ratio of training to validation objects (75:25) was
also adopted in this work [26]. The training set contains 40
compounds (32 “actives” and 8 “non-actives”) and the test
set 15 compounds (10 “actives” and 5 “non-actives”).

The ES-SWR algorithm [14] was used on the training data-
set (40 compounds) to select the most appropriate descrip-
tors. ES-SWR combines the advantages of both Forward
Selection (FS-SWR) and Backward Elimination (BE-SWR).
Forward Selection is computationally efficient for the gener-
ation of nested subsets of variables. On the other hand Back-
ward Selection eliminates the most appropriate variable, so
that the remaining variables perform best [27]. The objective
of the variable selection was to determine the optimum set of
descriptors that produce the most significant QSAR models
linking and interpreting the chemical structure of the small
molecules with their functional activity [27].

Firstly, Least Squares–Support Vector Machines
(LS-SVM) classification techniques [15] were applied for
the discrimination and the investigation of the pharmaco-
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Table 2 Dataset
(N -substituents) and model
predictions using LS-SVM

a Test set

N

N

O

N

R

F

F3C

O

Id R I-IP10 IC50 (nM)
(experimental)

I-IP10
log(1/IC50)
(experimental)

Class threshold
(IC50 790 nM)

Predicted
class

15 –(CH2)2OMe 300 −2.48 Active
16 –(CH2)2OEt 40 −1.60 Active
17 –(CH2)2CH3 10,000 −4.00 Non-active
18 –CH2–2-thiazolyl 100 −2.00 Active
19 –CH2–2-imidazoyl 230 −2.36 Active
20a −CH2–4-imidazoyl 650 −2.81 Active Active
21 –CH2–4-(1-methyl-imidazoyl) 240 −2.38 Active
22a −CH2–2-pyridyl 73 −1.86 Active Active
23 –CH2–3-pyridyl 13 −1.11 Active

phore ability of the selected by ES-SWR algorithm molecular
descriptors to the above data (55 quinazolinone analogs). For
constructing the SVM model the LS-SVM package [15] was
used after scaling both training and validation data in the
range [0,1], for “non-active” (IC50 range: 1,370–25,000 nM)
and “active” (IC50 range: 0.8–790 nM) molecules, respec-
tively. The threshold was defined to IC50 = 790 nM in order
to have a considerable distance between the nearest lower
and higher experimental values. The gap (580 nM) between
790 and 1,370 nM is the largest between two consecutive data
in terms of IC50 in the available experimental dataset.

The Kernel type that was adopted in the present work
was the Radial Basis Function (RBF). The first task was
the assignment of each molecule to one class, namely “ac-
tives” or “non-actives,” based on a cutoff value that was set
to IC50 = 790 nM. The bandwidth σ 2 and the regularization
parameter γ in the kernel function were optimized to achieve
the best possible discrimination between classes. The opti-
mized values obtained were σ 2 = 5 and γ = 400 [15].

For the performance evaluation of the SVM models, sev-
eral statistical tests such as recall (or sensitivity), specificity,
accuracy, precision, and F-measure were used [28,29]. Re-
call (or sensitivity) and Specificity are able to identify the dis-
crimination ability of the SVM model and accuracy presents
the ratio of the correctly discriminated classes. F-measure is

a function of Recall and Precision which indicate the accu-
racy of real and estimated class, respectively. According to
Fawcett et al. [29], for the calculation of the above statis-
tics the Confusion Matrix (Table 7) should be constructed.
In Table 7, TA indicates that active compound is correctly
classified as active (TA); FA indicates that active compound
is wrongly classified as active (FA); FN indicates that non-
active compound is wrongly classified as active (FN); and TN
indicates that non-active compound is correctly classified as
non-active (TN).

Recall = TA

TA + FN
(1)

Precision = TN

FA + TN
(2)

Specificity = TA

TA + FA
(3)

Accuracy = TA + TN

TA + FA + FN + TN
(4)

F-measure = 2(Recall)(Precision)

Recall + Precision
(5)

In the second stage, a MLR QSAR model was developed
by applying the selected molecular descriptors to the 32 “ac-
tives” small molecules of the dataset. The QSAR model was

123



228 Mol Divers (2010) 14:225–235

Table 3 Dataset (4-phenyl
substitutions) and model
predictions using LS-SVM

a Test set

N

N

O

N

R

F3C

O

N

Id R I-IP10 IC50 (nM)
(experimental)

I-IP10
log(1/IC50)
(experimental)

Class threshold
IC50 790 nM

Predicted
class

24 –H 299 −2.48 Active
25 –F 22 −1.34 Active
26 –Cl 25 −1.40 Active
27a –Me 14 −1.15 Active Active
28 –OEt 6 −0.78 Active
29 –C≡CCH3 4 −0.60 Active
30 –NO2 7 −0.85 Active
31a –C≡N 11 −1.04 Active Active
32a –SO2Me 10,000 −4.00 Non-active Non-active
33 –CO2H 1,370 −3.14 Non-active
34 –NHAc 25,000 −4.40 Non-active

evaluated for its robustness, accuracy, and reliability (Table 9,
Fig. 1).

To illustrate this, the following evaluation techniques were
used: the leave-one-out (LOO) cross-validation procedure,
validation through an external test set, and Y-randomization
[26,30,31].

Specifically for the external validation based on the vali-
dation set, the following criteria were used:

R2
pred > 0.6 (6)

(R2
pred − R2

o)

R2
pred

or
(R2

pred − R′2
o )

R2
pred

≤ 0.1 (7)

k or k′ ≈ 1 (8)

In Eqs. 6 and 7, R2
pred is the coefficient of determination

between experimental values and model predictions on the
validation set. Mathematical definitions of R2

o , R′2
o , k, and

k′ are based on regression of the observed activities against
predicted activities and regression of the predicted activities
against observed activities. The definitions of the aforemen-
tioned statistical indices are presented in detail in reference
[32,33].

In order for a QSAR model to be used for screening
new compounds, its domain of application [30,32] must be

defined and predictions for only those compounds that fall
into this domain may be considered reliable. The Extent of
Extrapolation method was adopted for defining the domain
of applicability of the produced method, based on the cal-
culation of the leverages for the components in the available
dataset [34–36].

Results and discussion

The results support that the molecular descriptors selected by
the ES-SWR algorithm combined with the LS-SVM mod-
eling methodology have discrimination and pharmacophore
ability and could be used as a filter with great sensitivity and
specificity in the range of 1,370 to 25,000 nM. The selected
molecular descriptors are the following: Highest Occupied
Molecular Orbital energy (HOMO), Principal Moment of
Inertia along X and Z axes (PMIX and PMIZ), Polar Sur-
face Area (PSA), Presence of triple bond (PTrplBnd), and
Kier shape descriptor (1κ). Furthermore, the proposed MLR
model (Eq. 9) has the ability to predict accurately the I-IP10
IC50 inhibition in the range of 0.8 to 790 nM using as inputs
the same molecular descriptors used with the LS-SVM.
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Table 4 Dataset (stereocenter)
and model predictions using
LS-SVM

a Test set

N

N

O

N

OEt

R2

R1

OEt

O

Id R1 R3 I-IP10 IC50 (nM)
(experimental)

I-IP10
log(1/IC50)
(experimental)

Class threshold
(IC50 790 nM)

Predicted
class

35a H H 2,300 −3.36 Non-active Non-active
36 H Me 75 −1.88 Active
37 Me Me 10,000 −4.00 Non-active
38 H Et 9 −0.95 Active
39a H Ph 4,000 −3.60 Non-active Non-active

Table 5 Dataset
(quinazolinone) and model
predictions using LS-SVM

a Test set

b

a

c

N

N

O

N

OEt

O

F3CO

N

Id a b c I-IP10 IC50 (nM)
(experimental)

I-IP10
log(1/IC50)
(experimental)

Class threshold
(IC50 790 nM)

Predicted
class

40a C C C 6 −0.78 Active Active
41 N C C 8 −0.90 Active
42 C N C 144 −2.16 Active
43 C C N 1, 400 −3.15 Non-active
44 N C N 480 −2.68 Active

The accuracy when LS-SVM classification technique was
applied to the training set (Tables 1–6) was 100%. The
LS-SVM model also demonstrated good performance in the
separate test set of 15 analogs. It accurately identified the 90%
of the small molecules of medium or high inhibitory activ-

ities (“actives,” IC50 range: 0.8–790 nM) and misclassified
only one of the analogs of low or no inhibitory activity (“non-
actives,” IC50 range: 1,370–25,000 nM). The model produced
by the LS-SVM method was also validated by applying the
Y-randomization test. In all random shuffles of the Y vector
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Table 6 Dataset (six–six fused
heterocyclic ring systems) and
model predictions using
LS-SVM

a Test set

CN

Ar =

F3C

F

N

O

Me

SO2Et
R=

N N

N

O

Ar

R
i

N

Ar

R
ii

N N

Ar

R
iii

N

N Ar

R
iv

N Ar

R
v

N N

N

Ar

R
vi

Me

O

N

N

Ar

R
vii

O

viii

N

N
R

Ar

ix

N

N
R

Ar

x

N

N
R

Ar

N

xi

N

N
R

Ar

Id R I-IP10 IC50 (nM)
(experimental)

I-IP10
log(1/IC50)
(experimental)

Class threshold
(IC50 790 nM)

Predicted
class

45 i 11 −1.04 Active
46a ii 0.8 0.10 Active Active
47a iii 2 −0.30 Active Active
48 iv 9 −0.95 Active
49a v 5 −0.70 Active Active
50 vi 4 −0.60 Active
51 vii 2 −0.30 Active
52 vii 6 −0.78 Active
53 ix 3 −0.48 Active
54a x 10 −1.00 Active Active
55 xi 18 −1.26 Active

we tried, the performance of the produced model was signif-
icantly reduced (20–40%). This illustrates that the accuracy
of the LS-SVM model is not due to a chance correlation.
LS-SVM model also passed successfully the tests for perfor-
mance evaluation [28,29]:

Recall = TA

TA + FN
= 0.9

Precision = TN

FA + TN
= 0.9

Specificity = TA

TA + FA
= 0.8

Accuracy = TA + TN

TA + FA + FN + TN
= 0.87

F-measure = 2(Recall)(Precision)

Recall + Precision
= 0.90

In the next stage an MLR QSAR model was developed by
applying the selected molecular descriptors to the “active
compounds” of the training data (32 compounds). The R2

statistic for the training set is equal to 0.80 as shown below,
while for the validation set the R2

pred statistic is 0.78. The
MLR QSAR equation was the following:

log(1/IC50) = −18.3 (±3.51) − 0.40 (±0.22) HOMO

− 0.384 × 10−3 (±0.104 × 10−4) PMIX

− 0.217 × 10−3 (±0.591 × 10−4) PMIZ

− 0.021 (±0.007) PSA

+ 1.19 (±0.213) PTrplBnd

+ 0.550 (±0.09)1κ (9)
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Table 7 Confusion matrix

Actual predict Active Non-active

Active TA = 9 FA = 1
Non-active FN = 1 TN = 4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-3.5

-3

-2.5

-2

-1.5
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-0.5

0

lo
g(

1/
IC

50
) 

pr
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ic
te

d

log(1/IC50) experimental

Training Data (R2= 0.80)

Validation Data (R2pred=0.75)

Fig. 1 Experimental versus predicted values log(1/IC50) for the train-
ing and validation data (Eq. 9)

R2 = 0.80, RMS = 0.39, F = 16.5, R2
LOO = 0.67, PRESS =

6.37, n = 32 (training set), R2
pred = 0.78, RMSpred =0.42,

n = 10 (test set).
Table 8, which presents the correlation matrix and the VIF

test, clearly supports that the six selected descriptors are not
highly correlated. Furthermore, the ratio of the objects in the
training set to the number of descriptors is (5:1), which is
typical of many QSAR studies [37,38].

The model was stable to the inclusion-exclusion of com-
pounds measured by the Leave-one-out (LOO) and Leave
Five Out (L5O) cross-validation procedures. This was sup-
ported by the following statistics: R2

LOO = 0.67 and R2
L5O =

0.65. Calculation of the R2
LOO statistic was performed using

all 32 models that are produced by excluding one compound
each time from the training examples, while calculation of
the R2

L5O statistic was based on 500 random exclusions of
5-member groups of examples.

The model (Eq. 9) also passed successfully Tropsha’s [32]
recommended tests for predictive ability:

R2
ext = 0.82 > 0.5

R2
pred = 0.78 > 0.6

(R2
pred − R2

o)

R2
pred

= −0.25 < 0.1

k = 0.95(0.85 ≤ k ≤ 1.15)

The MLR QSAR model was additionally validated by apply-
ing the Y-randomization test [37–39] . In particular, 10 random
shuffles of the Y vector gave R2 and R2

LOO values in the
ranges of 0.15 to 0.33 and 0.03 to 0.28, respectively. These
low R2 and R2

LOO values showed that the results from our
original model were not due to a chance correlation or struc-
tural dependency of the training set.

It needs to be emphasized however that no matter how
robust, significant, and validated a QSAR model may be,
it cannot be expected to predict reliably the modeled activ-
ity for the entire universe of chemicals [30]. The domain of
applicability of the model was defined using the extent of
extrapolation method as discussed above. According to this
method, we considered as reliable only the predictions of the
compounds whose leverages lie within the domain of applica-
bility. In Table 9 all leverages for active test set are presented.
The warning leverage limit is 0.65, and it can be concluded
from the leverage values in Table 9 that the predictions of
the QSAR model for test set small molecules are considered
reliable. An additional validation test has been carried out in
order to further assess the predictability and the applicability
of the model. The available data were divided randomly for
five times into a ratio 80:20 for training and test set, respec-
tively. The results are presented in Table 10.

The chemical meaning of the six descriptors used in the
produced LS-SVM and MLR QSAR workflow are briefly
described next:

Polar Surface Area is defined as the part of the surface
area of the module associated with nitrogens, oxygens, sul-
furs, and the hydrogens bonded to any of these atoms [40].
Polar Surface Area is a descriptor that correlates well the pas-
sive molecular transport through membranes and allows the
prediction of transport properties of drugs. Molecules with a
PSA of greater than 140 Å2 are usually believed to be poor
at permeating cell membranes [40].

Molecular orbital (MO) surfaces visually represent the
various stable electron distributions of a molecule. According
to Frontier Orbital Theory, the shapes and symmetries of the
highest-occupied and lowest-unoccupied molecular orbitals
(HOMO and LUMO) are crucial in predicting the reactivity
of a species and the stereo- and regiochemical outcome of a
chemical reaction [14].

Presence of Triple Bonds (PTrplBnd) is a dummy vari-
able (indicator variable) which is used to distinguish different
treatment groups. The presence of a triple bond in a molecule
is responsible for many peculiar chemical and physiochem-
ical properties [41].

The principal moments of inertia (PMI) (g/mol Å2) is a
physical quantity which is related to the rotational dynamics
of a module [14]. The PMIs are defined by the diagonal ele-
ments of the inertia tensor matrix when the Cartesian coordi-
nate axes are the principal axes of the module, with the origin
located at the center of mass of the module [43]. In this case
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Table 8 Correlation matrix
for the five selected descriptors

a VIF less than 10 indicates that
the model contains no
multicollinearity

HOMO PMIX PMIZ PSA PTrplBnd 1κ VIFa

HOMO 1 1.7
PMIX −0.17 1 2.2
PMIZ −0.02 0.33 1 1.6
PSA −0.46 0.66 −0.32 1 5.5
PTrplBnd −0.42 0.51 0.35 0.56 1 1.8
1κ −0.18 0.71 0.53 0.84 0.48 1 5.8

Table 9 Model predictions using MLR QSAR equation 9 (only ‘active’ molecules)

Id I-IP10 IC50 (nM)
(experimental)

I-IP10
log(1/IC50)
(experimental)

Training data
log(1/IC50) (predicted)
(R2 = 0.80, R2

LOO = 0.67)

Validation data
log(1/IC50) (predicted)
(R2

pred = 0.78)

Leverages
(limit = 0.65)

1 146 −2.16 −2.31
2 154 −2.19 −2.43
3a 375 −2.57 −2.92 0.37
5 710 −2.85 −3.05
6 790 −2.90 −2.74
7 587 −2.77 −2.25
9 75 −1.88 −1.99
13 88 −1.95 −1.86
14 156 −2.19 −1.84
15 300 −2.48 −2.47
16 40 −1.60 −1.99
18 100 −2.00 −1.84
19 230 −2.36 −2.36
20a 650 −2.81 −2.56 0.20
21 240 −2.38 −2.12
22a 73 −1.86 −1.63 0.08
23 13 −1.11 −1.47
24 299 −2.48 −1.91
25 22 −1.34 −1.55
26 25 −1.40 −1.45
27a 14 −1.15 −1.36 0.10
28 6 −0.78 −1.04
29 4 −0.60 −0.50
30 7 −0.85 −1.47
31a 11 −1.04 −0.31 0.30
36 75 −1.88 −1.42
38 9 −0.95 −1.28
40a 6 −0.78 −1.27 0.21
41 8 −0.90 −1.21
42 144 −2.16 −1.53
44 480 −2.68 −2.64
45 11 −1.04 −0.81
46a 0.8 0.10 −0.59 0.21
47a 2 −0.30 −0.72 0.22
48 9 −0.95 −0.92
49a 5 −0.70 −0.68 0.16
50 4 −0.60 −0.60
51 2 −0.30 −0.45
52 6 −0.78 −0.69
53 3 −0.48 −1.39
54a 10 −1.00 −0.75 0.49
55 18 −1.26 −0.65

a Test set
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Table 10 LS-SVM and MLR results from random split (80% for training and 20% for the test set)

Random
iteration

LS-SVM MLR

Sensitivity Specificity Total accuracy Recall Precision F-measure R2 R2
LOO R2

pred Domain of
applicability

1 0.86 0.75 0.82 0.86 0.86 0.86 0.81 0.66 0.78 All within
2 0.88 1.00 0.91 0.88 1.00 0.93 0.78 0.68 0.75 All within
3 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.68 0.74 All within
4 1.00 0.80 0.91 1.00 0.86 0.92 0.82 0.65 0.80 All within
5 0.88 1.00 0.91 0.88 1.00 0.93 0.70 0.67 0.79 All within

Table 11 1κ values and
corresponding shapes

A=5

1κ 0.800 2.222 3.200 5.000 

the off-diagonal elements of the inertia tensor matrix are zero
and the three diagonal elements Ixx , Iyy , and Izz correspond
to the moments of inertia about the X -, Y -, and Z -axes of the
module.

Kier and Hall shape descriptors [42] encode informa-
tion about several attributes of molecular shape. The spe-
cific indices are based on the atom count and the path count
of various orders. More specifically 1κ (first order shape
attribute) quantifies molecular complexity based on cyclicity
[40].

According to the produced LS-SVM and MLR QSAR
workflow, high values of Kier and Hall shape descriptor (1κ)
contribute positively to the activity. Thus, an improvement
on the activity can be expected by designing small molecules
with high 1κ values. Kier and Hall shape descriptors are con-
venient numerical delineators of potential value in molecu-
lar series where conformational states are limited or similar.
They are also of potential value in searching databases for
molecules with a prescribed shape. According to Kier and
Hall [42,44], when combined with indices reflecting elec-
tronic (in our study HOMO energy) and topological struc-
ture, they may be of great value in exploiting the information
from combinatorial libraries and data from high throughput
screening. In this study 1κ descriptor contributes greatly to
the discrimination power of the LS-SVM model. 1κ is the
first order shape attribute which is described by the 1 Pmax,
1 Pmin, P , and A. P is the number of paths in the H-depleted
molecular graph, 1 Pmin is the linear graph, 1 Pmax is the com-
plete graph in which all atoms are bonded to each other, and
A is the number of atoms [44].

1κ =
1 Pmax

1 Pmin

(1 P)2
1 Pmin = A − 1 1 Pmax = A(A − 1)

2

In Table 11 a range of 1κ values is shown for structures (real
and hypothetical) ranging from a linear structure to one with a
maximum number of cycles [44]. The structural information
encoded in 1κ is related to the complexity and the cyclicity of
a molecule which is not favorable (cyclicity) for the design of
novel and potent quinazolinone antagonists of CXCR3. The
remarks from the computational study agree also with the
experimental results (the compared compounds should have
the same number of atoms), for example, small molecules
with id. 8 (IC50 = 154 nM) versus id. 11 (IC50 = 10,000 nM)
or id. 10 (IC50 = 710 nM) versus id. 12 (IC50 = 10,000 nM).

While interpreting the physical meaning of the descrip-
tors, we have noticed that only “actives” compounds contain
triple bonds. More specifically 13 out of 42 active compounds
contain a triple bond at the 4-phenyl substitution. The major-
ity of the analogs contain cyano group. As is shown from the
experimental result, the introduction of a triple bond at the
4-phenyl substitution with a cyano group will improve the
activity. Nitrile groups are susceptible to nucleophilic attack
at carbon, while electrophilic agents attack the nitrile nitro-
gen [45].

Polar surface area is related to the hydrogen-bonding abil-
ity of the compounds, and the study has showed that values
between 65 and 110 Å contribute positively to the activity.
The presence of nitrogens, oxygens, sulfurs, and the hydro-
gens bonded to any of these atoms increases Polar Surface
Area value with a specific weight which depends on the
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atomic contributions of each group [46]. Once again the in sil-
ico study confirms the experimental results since it is clearly
stated in Johnson et al. [4,5] that substitution from other polar
groups may cause significant loss of the activity and there-
fore there is not a clear direction. Computational analysis
was used to interpret this phenomenon using quantitatively
polar groups through PSA.

On the other hand, molecules with high HOMO (highest
occupied molecular orbital energy) values are more able to
donate electron density more easily than molecules with low
HOMO energy values [14]. The HOMO energy value can
be increased with the presence of electron-donating groups
(EDG) such us NMe2, NH2, NHEt, and OMe and decreased
with the presence of electron-withdrawing groups (EWG)
such as halogens and cyano and nitro groups. From the de-
rived LS-SVM and MLR QSAR workflow we can conclude
that EWGs favor the biological action under study. It is impor-
tant to emphasize that the most potent analogs which are those
with id. 45–55, have strong electron-withdrawing groups in
both the sides of the molecule (cyano and fluorine).

Large values of principal moments of inertia (along X and
Z axes PMIXandPMIZ)correspond to lower inhibitionactiv-
ity. PMIX and PMIZ give information about how the product
of mass and distance influence the investigated activity along
the X and Z [35] axes of the quinazolines analogs.

Conclusions

The proposed method, due to the high predictive ability [30]
and simplicity, could be a useful aid to the costly and
time-consuming experiments for determining the CXCR3
functional antagonism effect of quinazolinone analogs. The
two-stage approach that is proposed in this work increases
the accuracy of the produced QSAR model, since it covers
a narrower chemical space, compared to a model that uses
all the available data [47,48]. A virtual screening procedure
[49] could be based on the proposed QSAR model. The de-
sign of novel active molecules by the insertion, deletion, or
modification of substituents on different sites of the mole-
cule and at different positions could therefore be guided by
the proposed model. The method [50,51] can also be used to
screen existing databases or virtual combinations to identify
derivatives with desired activity. In this scenario, the classifi-
cation model will be used to screen out inactive compounds,
while the applicability domain will serve as a valuable tool to
filter out “dissimilar” combinations. The molecular descrip-
tors used in QSAR workflow encode information about the
structure, branching, electronic effects, and polarity of the
modules and thus implicitly account for cooperative effects
between functional groups. The proposed QSAR workflow
aims to help researchers to design novel chemistry driven
molecules with desired biological activity.
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