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Abstract—This paper presents the results of a ligand-based virtual screening optimized procedure on 98 compounds which have
been recently evaluated as inhibitors of genotype 1 HCV polymerase. First, quantitative structure–activity patterns are investigated
for the selected compounds and then structural modifications are proposed to afford novel active patterns. An accurate and reliable
QSAR model involving five descriptors that is able to predict successfully the HCV inhibitory potency against genotype 1 HCV
polymerase is presented. Furthermore, the effects of various structural modifications on biological activity are investigated and bio-
logical activities of novel structures are estimated using the developed QSAR model. More specifically a search for optimized phar-
macophore patterns by insertions, substitutions, and ring fusions of pharmacophoric substituents of the main building block
scaffolds is described. The detection of the domain of applicability defines compounds whose estimations can be accepted with
confidence.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The hepatitis C virus (HCV) is a member of the Flavivi-
ridae family. Chronic infection with HCV is associated
with liver cirrhosis that often leads to hepatic failure
and hepatocellular carcinoma. Although the number
of new infections has been significantly reduced by the
introduction of reliable blood testing, more than 170
million people worldwide are chronically infected with
HCV, which has become a global health threat and
the main cause of adult liver transplants in developed
nations. There is as yet no effective therapy for HCV-
associated chronic hepatitis. Hepatitis C is considered
a major public health threat and current therapies still
call for major improvements.1,2
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Current treatments with interferon R (IFN-R) alone or
in combination with ribavarin are effective only in lim-
ited cases and exhibit severe adverse side effects. There
is thus an obvious need to develop effective therapeutic
strategies to cure HCV-associated hepatitis.3,4 HCV
has become the paramount target of antiviral protease
inhibitor research, particularly HCV genotype 1. This
virus affects the most people worldwide and is consid-
ered the most challenging genotype to treat; indeed,
for the large number of patients who fail standard ther-
apies, there exists no alternative treatment. Protease
inhibitors may be the most promising candidates to fill
this unmet medical need. The most studied targets for
anti-HCV therapy are the NS3 protease and the NS5b
polymerase.5,6 In the case of HCV NS5b polymerase,
both nucleoside and non-nucleoside inhibitors have
appeared recently in the literature.7,8

In this work, we have selected from the literature 98
compounds which were evaluated as inhibitors of
genotype 1 HCV polymerase.9–11 First, quantitative
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structure–activity patterns were investigated for the
selected compounds and then structural modifications
were proposed to afford novel active patterns. The first
major result is the development of an accurate and reli-
able QSAR model involving five descriptors that is able
to predict successfully the HCV inhibitory potency
against genotype 1 HCV polymerase. As a next step,
the effects of various structural modifications on biolog-
ical activity were investigated and biological activities of
novel structures were estimated using the developed
QSAR model. The detection of the domain of applica-
bility defined the compounds whose estimations can be
accepted with confidence.
2. Material and methods

2.1. Data set

The database consists of 98 recently discovered inhibi-
tors of genotype 1 HCV polymerase (Tables 1–6).9–11

In order to model and predict the inhibitory activity of
Table 1. Biochemical potency of N-1-heteroalkyl-4-hydroxyquinolon-3-yl-be

N
NHR

R1

O

OH N
O

ID R R1 IC50 (lM),

observed

log(1/IC50)

observed

1 Ph H 5.09 �0.7067

2 2-BrC6H4 H 6.72 �0.8274

3b 3-BrC6H4 H 1.04 �0.0170

4b 4-BrC6H4 H 10.36 �1.0154

5b 2-MeC6H4 H 6.12 �0.7868

6b 3-MeC6H4 H 8.21 �0.9143

7 2-Thienyl H 2.33 �0.3674

8 2-Thiazolyl H 35.8 �1.5539

9b 2-Furyl H 3.26 �0.5132

10 3-Furyl H 1.55 �0.1903

11b 3-Me-thien-2-yl H 15.0 �1.1761

12b 5-Cl-thien-2-yl H 4.78 �0.6794

13b Pr H 0.951 0.0218

14b Bu H 0.928 0.0325

15 i-Bu H 0.629 0.2013

16 Neopentyl H 0.411 0.3862

17 i-Pr H 0.941 0.0264

18b Cyclopropyl H 0.285 0.5452

19b Cyclohexyl H 2.528 �0.4028

20 Me Me 6.35 �0.8028

21b Et Et 2.46 �0.3909

22 Et Pr 1.89 �0.2765

23b Pr Pr 2.24 �0.3502

24b Pr i-Pr 6.40 �0.8062

25 Me Ph 16.5 �1.2175

26b Cyclobutyl 0.278 0.5560

27 Cyclopentyl 0.747 0.1267

28 Cyclohexyl 0.356 0.4486

29 Cycloheptyl 1.04 �0.0170

30 4-Pyranyl 4.63 �0.6656
HCV inhibitors, 69 physicochemical constants, topolog-
ical and structural descriptors (Table 7) were considered
as possible input candidates to the model. Before the
calculation of the descriptors, all structures were fully
optimized using CS Mechanics and more specifically
MM2 force fields and the Truncated-Newton–Raphson
optimizer, which provide a balance between speed and
accuracy (ChemOffice Manual). Before calculating the
HOMO and LUMO Energies (eV) all the structures
were additionally fully optimized using the semiempiri-
cal AM1 basis set. All the descriptors were calculated
using ChemSar and Topix.12,13

2.2. Separation into a training and a validation set

The separation of the data set into training and validation
sets was performed according to the popular Kennard
and Stones algorithm.14 The algorithm starts by finding
two samples that are the farthest apart from each other
on the basis of the input variables in terms of some metric,
for example, the Euclidean distance. These two samples
are removed from the original data set and placed into
nzothiadiazines

N
H

S
O

(lM), Training data log(1/IC50)

(lM), predicted

Test data log(1/IC50)

(lM), predicted

�1.0280

�0.8012

�0.5975

�0.5646

�0.7395

�0.5609

�0.6316

�0.1901

�0.9046

�0.9292

�0.2726

�0.5892

�0.2419

�0.2823

0.0611

0.4836

�0.0380

�0.1014

�0.2092

�0.1390

�0.1014

�0.0504

�0.0163

�0.1141

�0.5051

0.0079

�0.0674

�0.1315

�0.1626

0.1857



Table 2. Biochemical potency of N-1-benzyl and N-1-(3-methylbutyl)-4-hydroxy-1,8-naphthyridon-3-yl benzothiadiazine analogs containing

substituents on the aromatic ring

N N
R1

O

OH

N
H

S
N
O O

R7

R5

ID R1 R5 R7 IC50 (lM),

observed

log(1/IC50) (lM),

observed

Training data log(1/IC50)

(lM), predicted

Test data log(1/IC50)

(lM), predicted

31 Benzyl H H 5.8 �0.7634 �1.3546

32 Benzyl OMe H 18 �1.2553 �0.9298

33 Benzyl H OMe 8.31 �0.9196 �0.8311

34b Benzyl OH H 8.37 �0.9227 �0.8887

35b Benzyl H Me 25.7 �1.4099 �0.9581

36b Benzyl Me H 6.7 �0.8261 �1.0038

37 Benzyl H Br 16.75 �1.2240 �1.0036

38b Benzyl Br H 6.2 �0.7924 �1.0989

39 3-Methylbutyl H H 0.81 0.0915 �0.3554

40 3-Methylbutyl OMe H 17.58 �1.2450 �0.2026

41b 3-Methylbutyl H OMe 1.13 �0.0531 �0.1781

42 3-Methylbutyl H OH 0.39 0.4089 0.1360

43 3-Methylbutyl H –OCH2CH2CH3 1.62 �0.2095 �0.0582

44 3-Methylbutyl H –OCH2CO2t-Bu 5 �0.6990 0.6768

45 3-Methylbutyl H –OCH2CO2H 0.367 0.4353 0.3627

46 3-Methylbutyl H –OCH2CONMe2 0.934 0.0297 0.7455

47 3-Methylbutyl H –OCH2CONHMe 0.18 0.7447 0.4441

48 3-Methylbutyl H –OCH2CONH2 0.046 1.3372 0.6624

49b 3-Methylbutyl H –OCH2CH2NH2 0.637 0.1959 0.2903

50 3-Methylbutyl H –OCH2CN 0.141 0.8508 0.3864

51 i-Pentyl H –NH2 0.31 0.5086 0.4659

52 i-Pentyl H –NHCH2CN 0.12 0.9208 0.4848

53b i-Pentyl H –NHCH2CONH2 0.47 0.3279 0.6968

54 i-Pentyl H –NHCOCF3 0.906 0.0429 0.1542

55 i-Pentyl H –NHSO2Ph 0.041 1.3872 0.8994

56b i-Pentyl H –NHSO2i-Pr 0.008 2.0969 1.7884

57 i-Pentyl H –NHSO2(CH2)3CH3 0.022 1.6576 1.1332

58 i-Pentyl H –NHSO2Me 0.002 2.6990 1.5078

Table 3. Biochemical potency of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine

N N O

OH

N
H

S
N
O O H

N
S

H
N O

R
O O O

ID R IC50 (lM),

observed

log(1/IC50) (lM),

observed

Training data log(1/IC50)

(lM), predicted

Test data log(1/IC50)

(lM), predicted

59 CH3 0.063 1.2007 1.3020

60 CH2CH2Cl 0.189 0.7235 1.4784

61b CH2CHCH2 0.088 1.0555 1.5171

62 CH2CCH 0.072 1.1427 1.2451

63 CH2CH2CN 0.035 1.4559 1.4893

64b CH2Ph 0.058 1.2366 1.1106

65b CH2CH2NH2 0.021 1.6778 1.4791

66 CH2CO2CH2CH3 0.061 1.2147 1.5062

67 CH2CH2OCH3 0.087 1.0605 1.4727

68 CH2CH2OCH2Ph 0.096 1.0177 1.1676

69b CH2CO2H 0.050 1.3010 1.5286
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the calibration data set. This procedure is repeated until
the desired number of samples has been reached in the
calibration set. The advantages of this algorithm are that
the calibration samples map the measured region of the



Table 4. Biochemical potency of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine

N N O

OH

N
H

S
N
O O H

N
S

H
N

O O

X
Y

Z

ID X Y Z IC50 (lM),

observed

log(1/IC50) (lM),

observed

Training data log(1/IC50)

(lM), predicted

Test data log(1/IC50)

(lM), predicted

70 H H CO2Me 0.048 1.3188 1.1582

71b H H CO2H 0.020 1.6990 1.2876

72 H H CONHMe 0.043 1.3665 1.4642

73 H H CONH2 0.018 1.7447 1.5259

74 H CO2Et H 0.132 0.8794 1.3241

75b H CO2H H 0.115 0.9393 1.2397

76b H CONH2 H 0.043 1.3665 1.6015

77 H CONHCH2CONH2 H 0.043 1.3665 1.9998

78b CO2Me H H 0.129 0.8894 1.0767

Table 5. Biochemical potency of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine

N N O

OH

N
H

S
N
O O H

N
S

N

O O

R1

R2

ID R1 R2 IC50 (lM),

observed

log(1/IC50) (lM),

observed

Training data log(1/IC50)

(lM), predicted

Test data log(1/IC50)

(lM), predicted

79 H CH2CH2Ph 0.018 1.7447 0.9244

80b H CH2Ph 0.0055 2.2596 0.7451

81 H Ph 0.041 1.3872 0.8738

82 H CH2CH2OH 0.107 0.9706 1.6083

83b H Cyclohexyl 0.067 1.1739 1.3301

84 H Cyclopentyl 0.039 1.4089 1.4256

85b H CH2CH2NH2 0.010 2.0000 1.5672

86 H 4-Piperidinyl 0.032 1.4949 2.0141

87 H CH2CH2CONH2 0.020 1.6990 1.4979

88b H 4-MeOC6H4CH2 0.010 2.0000 1.0536

89b H 3-MeOC6H4CH2 0.015 1.8239 0.9987

90 H 2-MeOC6H4CH2 0.057 1.2441 0.8640

91 Piperidinyl 0.051 1.2924 1.3555

92b Pyrrolidinyl 0.027 1.5686 1.4121

93 Azetidinyl 0.024 1.6198 1.5494
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input variable space completely with respect to the in-
duced metric and that the test samples all fall inside the
measured region. According to Tropsha et al.15 and Wu
et al.16 the Kennard and Stones algorithm is one of the
best ways to build training and test sets.

2.3. Multiple Linear Regression (MLR) model develop-
ment—variable selection

Our first objective was to determinate the best variables
which produce the most significant linear QSAR models
linking the structure of compounds with their binding
affinity. The ES-SWR algorithm was used on the train-
ing data set to select the most appropriate descriptors.
Elimination Selection-Stepwise Regression (ES-SWR)
is a popular stepwise technique17 that combines For-
ward Selection (FS-SWR) and Backward Elimination
(BE-SWR).

2.4. Model validation

The accuracy of the proposed MLR model was
illustrated using the following evaluation techniques:
leave-one-out (LOO) and leave-five-out (L5O) cross-val-
idation procedures, validation through an external test
set, and Y-randomization.



Table 6. Biochemical potency of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine

ID Structure IC50 (lM),

observed

log(1/IC50) (lM),

observed

Training data log(1/IC50)

(lM), predicted

Test data log(1/IC50)

(lM), predicted

94
N N O

OH

N
H

S
N
O O H

N
S

N

O

O

O O

0.121 0.9172 0.8928

95
N N O

OH

N
H

S
N
O O H

N
S

NH2

O O

0.009 2.0458 1.3865

96b

N N O

OH

N
H

S
N
O O H

N
S

H
N

O O

0.014 1.8539 1.1590

97

N
HN

O

OH

N
H

S
N
O O H

N
S

NH2

O O

0.0052 2.2840 1.5803

98

N
HN

O

OH

N
H

SN
O O H

N
S

H
N

O O
0.0087 2.0605 1.5371
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2.5. Cross-validation test

Cross-validation is a popular technique used to explore
the reliability of statistical models. Based on this tech-
nique, a number of modified data sets are created by
deleting in each case one or a small group (leave-
some-out) of objects. For each data set, an input–out-
put model is developed, based on the utilized modeling
technique. The model is evaluated by measuring its
accuracy in predicting the responses of the remaining
data (the ones that have not been utilized in the
development of the model).18

2.6. Validation through the external validation set

According to Tropsha’ group15,19 a QSAR model is con-
sidered predictive, if the following conditions are
satisfied:
R2
pred > 0:6 ð1Þ
ðR2 � R2

oÞ
R2

or
ðR2 � R02o Þ

R2
is less than 0:1 ð2Þ

k or k0 is close to 1 ð3Þ
In Eqs. 2 and 3 R2 is the coefficient of determination be-
tween experimental values and model prediction on the
training set. Mathematical definitions of R2

o, R02o , k and k 0

are based on regression of the observed activities against
predicted activities and the opposite (regression of the
predicted activities against observed activities). The
definitions are presented clearly in Ref. 20 and are not
repeated here for brevity.

2.7. Y-Randomization test

This technique ensures the robustness of a QSAR
model.15,21 The dependent variable vector (biological



Table 7. Calculated descriptors

ID Description Notation ID Description Notation

1 Molar Refractivity MR 2 Diameter Diam

3 Partition Coefficient (Octanol Water) C logP 4 Molecular Topological Index TIndx

5 Principal Moment of Inertia Z PMIZ 6 Number of Rotatable Bonds NRBo

7 Principal Moment of Inertia Y PMIY 8 Polar Surface Area PSAr

9 Principal Moment of Inertia X PMIX 10 Radius Rad

11 LUMO Energy LUMO 12 Shape attribute ShpA

13 HOMO Energy HOMO 14 Shape coefficient ShpC

15 Balaban Index BIndx 16 Sum of Valence Degrees SVDe

17 Cluster Count ClsC 18 Total Connectivity TCon

19 Wiener Index WIndx 20 Total Valence Connectivity TVCon

21 DistEqTotal DistEqTotal 22 Randic 0 Chi0

23 Randic 1 Chi1 24 Randic 2 Chi2

25 Randic 3 Chi3 26 Randic 4 Chi4

27 Randic Information 0 ChiInf0 28 Randic Information 1 ChiInf1

29 Randic Information 2 ChiInf2 30 Randic Information 3 ChiInf3

31 Randic Information 4 ChiInf4 32 Molecular Weight MW

33 Randic Mod ChiMod 34 Xu1 Xu1

35 Xu2 Xu2 36 Xu3 Xu3

37 Balaban Topological TopoJ 38 Number of Branches NBranch

39 Number of Rings NRings 40 Wiener Dim Wiener Dim

41 Bertz Bertz 42 AtomCompMean AtomCompMean

43 AtomCompTot AtomCompTot 44 Zagreb1 Zagreb1

45 Zagreb2 Zagreb2 46 Kappa1 Kappa1

47 Kappa2 Kappa2 48 Kappa3 Kappa3

49 Wiener Distance WienerDistCode 50 Polarity Polarity

51 DistEqMean DistEqMean 52 Quadratic Quadr

53 InfMagnitDistTot InfMagnitDistTot 54 ScHultz ScHultz

55 Gordon Gordon 56 Kier-Hall 0 Ki0

57 Kier-Hall 1 Ki1 58 Kier-Hall 2 Ki2

59 Kier-Hall 3 Ki3 60 Kier-Hall 4 Ki4

61 Kier-Hall Information 0 KiInf0 62 Kier-Hall Information 1 KiInf1

63 Kier-Hall Information 2 KiInf2 64 Kier-Hall Information 3 KiInf3

65 Kier-Hall Information 4 KiInf4 66 Randic Cluster 3 ChiCl3

67 Randic Cluster 4 ChiCl4 68 Wiener Information InfWiener

69 Wiener Index WIndx
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action) is randomly shuffled and a new QSAR model is
developed, using the given modeling algorithm. The pro-
cedure is repeated several times and the new QSAR
models are expected to have low R2 and Q2 values. If
the opposite happens then an acceptable QSAR model
cannot be obtained for the specific modeling method
and data.
Table 8. Correlation matrix of the 5 selected descriptors

C logP HOMO Ki2 KiInf0 KiInf3

C logP 1

HOMO 0.105 1

Ki2 0.248 0.010 1

KiInf0 0.091 0.062 0.582 1

KiInf3 0.300 0.162 0.578 0.550 1
3. Defining model applicability domain

In order for a QSAR model to be used for screening new
compounds, its domain of application15,20 must be de-
fined and predictions for only those compounds that fall
into this domain may be considered reliable. Extent of
Extrapolation15 is one simple approach to define the
applicability of the domain. It is based on the calcula-
tion of the leverage hi

22 for each chemical, where the
QSAR model is used to predict its activity:

hi ¼ xiðX TX Þ�1xT
i ð4Þ

In Eq. 4 xi is the row vector containing the k model
parameters of the query compound and X is the n · k
matrix containing the k model parameters for each
one of the n training compounds. A leverage value great-
er than 3k/n is considered large. It means that the pre-
dicted response is the result of a substantial
extrapolation of the model and may not be reliable.
4. Results and discussion

First, the data set of 98 derivatives was partitioned into
a training set of 60 compounds, and a validation set of
38 compounds according to the Kennard and Stones14

algorithm. The algorithm was applied on the complete
database consisting of all 69 available descriptors. The
validation examples are marked with b in Tables 1–6.
The validation data were not involved by any means
in the process of selecting the most appropriate descrip-
tors or in the development of the QSAR model. They
were considered as a completely unknown external set
of data, which was used only to test the accuracy of
the produced model.
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The MLR QSAR model was thus developed by applying
the ES-SWR algorithm on the set of training data. The
result was the following six-parameter (five descriptors
and the intercept) equation:

logð1=IC50Þ ¼ 4:12� 0:316 � C log Pþ 0:346

�HOMOþ 0:434 �Ki2þ 2:24

�KiInf0� 2:31 �KiInf3 ð5Þ
n = 60; R2 = 0.74; F = 29.97; RMSE = 0.52; Q2 = 0.67;
SPRESS = 0.58.

From the above equation we can conclude that the most
significant descriptors according to the ES-SWR algo-
rithm are Lipophilicity (C logP), HOMO energy, Kier
and Hall index order 2 (Ki2), and Kier and Hall infor-
mation indices order 0 and 3 (KiInf0, KiInf3). Table 8
presents the correlation matrix, where it is clear that
the seven selected descriptors are not highly correlated.
The chemical meaning of the seven descriptors is briefly
described next.

Lipophilicity is known to be important for absorption,
permeability, and in vivo distribution of organic com-
pounds17 and has been used as a physicochemical
descriptor in QSARs with great success. Lipophilicity
can be factorized in two main terms: Hydrophobicity
which refers to non-polar interactions (such as disper-
sion forces, hydrophobic interactions) of the solute with
organic and aqueous phases, and polarity which refers
to polar interactions (such as ion–dipole interactions,
hydrogen bond induction, orientating forces, etc.).
From the derived QSAR equation we can conclude that
lipophilic groups do not favor the biological action un-
der study.

Molecular orbital (MO) surfaces visually represent the
various stable electron distributions of a molecule.
According to Frontier Orbital Theory, the shapes
and symmetries of the highest-occupied and lowest-
unoccupied molecular orbitals (HOMO and LUMO)
are crucial in determining the chemical reactivity of
a species and the stereochemical and regiochemical
outcome of a chemical reaction. The energies of the
highest-occupied and the lowest-unoccupied molecular
orbitals (HOMO/LUMO energies) are frequently used
quantum chemical descriptors. As a consequence, the
derived QSAR models will include information regard-
ing the nature of the intermolecular forces involved in
determining the biological activity of the compounds
in question. HOMO energy in particular has been
identified as being of significant value to QSAR stud-
ies.17 Molecules with high HOMO (highest occupied
molecular orbital energy) values can donate their elec-
trons more easily compared to molecules with low
HOMO energy values. The HOMO energy value is in-
creased with the presence of electron-donating groups
(EDG) such us NMe2, NH2, NHEt, and OMe and de-
creased with the presence of electron-withdrawing
groups (EWG) such as halogens, cyano and nitro
groups. From the derived QSAR equation we can
conclude that EDGs favor the biological action under
study.
In addition to the aforementioned indices, three topo-
logical indices were found to significantly influence the
activity.17,23 Topological indices give information not
only about the atomic constitution of a compound but
also about the presence and character of chemical bonds
by which the atoms are connected to each other. Con-
nectivity indices, such as Ki2 index, are among the most
popular topological indices and can be used to charac-
terize edges as a primitive bond order accounting for
bond accessibility, that is, the accessibility of a bond
to encounter another bond in intermolecular interac-
tions. The value of Ki2 as defined by Kier and Hall is
used to take into account all valence electrons of atoms
and is useful for characterizing heteroatoms and carbon
atoms involved in multiple bonds. Information indices
such as KiInf0 and KiInf3 are graph theoretical invari-
ants that view the molecular graph as a source of differ-
ent probability distributions to which information
theory definitions can be applied. They can be consid-
ered as a quantitative measure of the lack of structural
homogeneity or the diversity of a graph, in this way
being related to symmetry associated with structure.

Eq. 5 was used to predict the binding affinity for the val-
idation examples. The results are presented in the last
columns of Tables 1–6 and correspond to the following
statistics: R2

pred ¼ 0:81, RMSE = 0.49. The leverages for
all 38 testing compounds were computed (Table 9). All
38 compounds in the test set fall inside the domain of
the model (warning leverage limit 0.30). The results illus-
trated once more that the linear MLR technique com-
bined with a successful variable selection procedure are
adequate to generate an efficient QSAR model for pre-
dicting the binding affinity of different compounds.

The proposed model (Eq. 5) passed all the tests related
to the predictive ability (Eqs. 1–3).

R2
pred ¼ 0:81 > 0:6

ðR2 � R2
oÞ

R2
¼ �0:22 < 0:1; k ¼ 1:10

For a more exhaustive testing of the predictive power of
the model, validation of the model was also carried out
using the LOO and the L5O cross-validation techniques
on the training set of compounds. The L5O method was
implemented by selecting randomly groups of five com-
pounds from the available training data. Each group
was left out and that group was predicted by the model
developed from the remaining observations. Three thou-
sand random groups of five compounds were selected
for the implementation of the L5O cross-validation test.
It should be emphasized that the procedure for develop-
ing the QSAR models included the selection of the best
descriptors. Therefore, each time one (LOO) or five
(L5O) compounds were excluded from the training set,
the modeling procedure selected the best descriptors
and developed an MLR model based only on the
remaining observations. The excluded compounds were
not involved by any means in the development of the
model. It was important that the model was stable to
the inclusion–exclusion of compounds. The results pro-
duced by the LOO (Q2 = 0.67) and the L5O



Table 9. Leverages for the test set

Compound ID Leverage limit 0.30

3 0.0974

4 0.1003

5 0.0721

6 0.0787

9 0.1045

11 0.0483

12 0.0729

13 0.1094

14 0.1236

18 0.0597

19 0.0762

21 0.1036

23 0.1662

24 0.0857

26 0.0773

34 0.1070

35 0.0942

36 0.1003

38 0.1448

41 0.0972

49 0.0837

53 0.1157

56 0.0542

61 0.0485

64 0.0646

65 0.0898

69 0.0784

71 0.0865

75 0.0782

76 0.0845

78 0.0765

80 0.0796

83 0.0762

85 0.0663

88 0.0723

89 0.0814

92 0.0537

96 0.0403

Table 10. Virtual screening, compounds 1n–4n

N N

N
H

S
N S

H
N NH2R

O

O O

O O

ID R log(1/IC50), predicted Leverage-limit

1n NH2 1.3695 0.2336

2n SH 1.3035 0.2266

3n NHOH 1.7075 0.1824

4n NHNH2 1.5134 0.2129
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ðQ2
L5O ¼ 0:71Þ cross-validation tests illustrated the qual-

ity of the obtained model.

The model was further validated by applying the Y-ran-
domization. Several random shuffles of the Y vector
were performed and the low R2 and Q2 values that were
obtained show that the good results in our original mod-
el are not due to a chance correlation or structural
dependency of the training set. It should be noted that
for each random permutation of the Y vector, the com-
plete training procedure was followed for developing the
new QSAR model, including the selection of the most
appropriate descriptors. The results of the Y-randomi-
zation from 10 shuffles of the Y-vector gave R2 and Q2

values in the ranges of 0.0–0.3 and 0.0–0.18,
respectively.

While ligand flexibility is an initially useful feature in
identifying compounds with good biological activity it
can often result in low specificity. The introduction of
rigidity to a ligand can increase specificity. In order to
examine this for the above HCV inhibitors a virtual
screening study was performed using the above-con-
structed model where the objective was to introduce
rigidity and thereby provide compounds with potentially
improved specificity with equal or improved predicted
biological activity. Such a study could provide new syn-
thetic targets worthy of investigation.24–26 The represen-
tative modifications that led to novel compounds are
shown in Tables 10–15. Biological activities of the
compounds characterized as ‘actives’ were estimated
using the developed MLR equation. The activity
values together with the leverages are also shown in
Tables 10–15.

Initially compound 95 was chosen and the C-4 substitu-
ent was screened. Replacement of the C-4 hydroxy with
amino, thiol, hydroxylamino or hydrazino substituents
led to compounds with predicted activities all within
the domain of applicability (Table 10). The hydroxyl-
amino had a higher activity (1.7075) although a slightly
reduced domain of applicability (0.1824).

Ring fusion was introduced at the junction between the
thiadiazine and the pyridopyridine for compound 95
and compound 1n with the highest domain of applicabil-
ity (0.2336). This compound was chosen since the do-
main of applicability indicated it would tolerate the
greatest structural changes.

As shown in Table 11, only one ring fusion compound
6n was tolerated by the model and found to be within
the acceptable domain of applicability (0.0756). Further-
more compound 6n showed increased activity (2.1518)
and so this ring fusion was chosen for further screening
(Table 12).

The carbonyl functionality of the pyridone was subse-
quently modified to that of an oxime compd 9n and
hydrazone compd 10n. These modifications led to large
increases in activity but were clearly out of the model’s
domain of applicability. A second ring fusion involving
transformation of the diaminosulfonyl group into a ben-
zo-1,2,5-thiadiazolidine-1,1-dioxide also gave some
interesting information. The model tolerated this second
ring fusion although the domain of applicability was
only marginally acceptable (Table 13).

Compound 15n was chosen for further modification ow-
ing to its excellent predicted activity (2.6828) whilst



Table 11. Virtual screening, compounds 5n–8n

5n (X = O)
6n (X = NH)

N N

N

S
N S

H
N NH2O

O O

O O

X
N N

N

S
N S

H
N NH2X

O O

O O

7n (X = O)
8n (X = NH)

O
I

II

ID X log(1/IC50), predicted Leverage-limit

5n O(I) 1.5777 �0.0943

6n NH(I) 2.1518 0.0756

7n O(II) 1.8152 �0.0723

8n NH(II) 1.9369 �0.1293

Table 12. Virtual screening, compounds 9n–10n

6n (X = O)
9n (X = NOH)
10n (X = NNH2)

N N

N

S
N S

H
N NH2X

O O

O O

NH

ID X log(1/IC50), predicted Leverage-limit

6n O 2.1518 0.0756

9n NOH 2.9276 �0.1206

10n NNH2 2.9798 �0.2287

Table 13. Virtual screening, compounds 11n–16n

11n (X = O)
12n (X = NOH)
13n (X = NNH2)

N N

N

S
NX

O O

NH

NH
SHN

O
O

I

14n (X = O)
15n (X = NNH2)
16n (X = NOH)

N N

N

S
NX

O O

NH

N
H

S

H
N O

O

II

ID X log(1/IC50), predicted Leverage-limit

11n O(I) 2.2774 0.0949

12n NOH(I) 2.8525 �0.0970

13n NNH2(I) 2.9027 �0.1907

14n O(II) 1.9378 0.1572

15n NOH(II) 2.6828 �0.0482

16n NNH2(II) 2.7239 �0.1346

Table 14. Virtual screening, compounds 17n–26n

N N

N

S
NNOH

O O

NH

NH
SN

O
OR

I
N N

N

S
NN

O O
HO

NH

N
SHN

O
O

II

N N

N

S
NN

O O
HO

N

NH
SHN

O
O

III

ID R log(1/IC50), predicted Leverage-limit

17n Me 3.0681 �0.0619

18n CF3 3.1915 �0.0640

19n Et 3.0033 �0.0192

20n n-Pr 2.9792 0.0340

21n i-Pr 3.0912 �0.0121

22n Vinyl 2.7533 0.0221

23n n-Bu 3.0327 0.0011

24n s-Bu 2.9596 0.0796

25n s-Bu(II) 2.9354 0.0567

26n H(III) 2.4022 0.1751
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being only marginally outside of the domain of applica-
bility (�0.0482). Alkyl groups were subsequently intro-
duced on the thiadiazolidine ring nitrogens to observe
their effect on both activity and domain of applicability
(Table 14).

The introduction of N-alkyl groups improved the activ-
ity and the domain of applicability was superior for sec-
Bu groups. Furthermore the activity and domain of
applicability was not significantly dependent upon
which 1,2,5-thiadiazolidine ring nitrogen was alkylated.
Introduction of the N-alkyl substituent on the fused
pyrazole ring nitrogen led to a significantly improved
domain of applicability but a reduced activity.

A similar improvement in the domain of applicability
with concomitant reduction in activity was observed
when the oxime functionality of compounds 17n, 19n–
21n, 23n, and 24n was replaced by a simple carbonyl
group (Table 15). However, even here the predicted
activity is quite significantly improved compared to the
original compd 95 and comfortably within the model’s
domain of applicability.



Table 15. Virtual screening, compounds 27n–32n

N N

N

S
NO

O O

NH

NH
SN

O
OR

ID R log(1/IC50), predicted Leverage-limit

27n Me 2.6841 0.0689

28n Et 2.5983 0.1090

29n n-Pr 2.5952 0.1403

30n i-Pr 2.6916 0.1179

31n n-Bu 2.5794 0.1584

32n s-Bu 2.4214 0.1571
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The above virtual screening study has identified possible
ring fusions which are tolerated by the model and main-
tain good predicted activities within the domain of
applicability. The proposed structures promise to be ri-
gid active HCV inhibitors derived from those chosen for
the training set and could be expected to show improved
specificity.

The virtual screening study has generated structures
with a clear improvement in predicted biological activity
within the domain of applicability. The results illustrate
the utility of prediction protocols based on calculated
descriptors, such as the ones found in Table 7. However,
the descriptors of Table 7 only crudely reflect the recep-
tor–ligand binding. A future extension of this work
might be able to take advantage of the ready availability
of receptor–ligand co-crystal structures relevant to this
particular chemical series, which are available in the
Protein Data Bank (PDB).27 Additionally, a parallel 3-
D QSAR model could be constructed using for example
the Comparative Molecular Field Analysis (CoMFA)
methodology.28 In this way, the strategy presented in
this paper will be a part of a multi-pronged approach,
where several alternative computational methods will
be used to identify possible leads, before investing in
the synthesis of new structures.

Finally a cautionary note should be included dealing
with the biological activity scales. While the data from
the experimental and virtual studies have been recorded
with the same units it must be noted that the predicted
activities produced by the virtual model are significantly
higher. It would be truly remarkable if the model was
able to accurately predict such activities quantitatively
but this is unlikely. The synthesis and study of these
compounds would be required to truly validate the vir-
tual model and as such is a worthy pursuit but this is
outside the scope of this present paper. It must therefore
be noted that the virtual screening study acts only as an
aid in proposing structural modifications to assist ongo-
ing SAR studies. The high biological activities predicted
are only indicative of which structures should be
targeted for synthesis on the basis that they meet or
approach the optimal values for the chosen descriptors
for the given model.
5. Conclusions

In the present study five descriptors [Lipophilicity
(C logP), HOMO energy, Kier and Hall index order 2
(Ki2), and Kier and Hall information indices order 0
and 3 (KiInf0, KiInf3)] were found to be important
for describing the inhibition activity against genotype
1 HCV polymerase. The five-descriptor set contains elec-
tronic, topological, and physicochemical information
about molecules, and describes and models successfully
the binding affinity of these small molecules.

The validation procedures utilized in this work (sepa-
ration of data into independent training and valida-
tion sets, Y-randomization) illustrated the accuracy
and robustness of the produced QSAR model not
only by calculating its fitness on sets of training data,
but also by testing the predictive ability of the model.
The proposed method, due to the high predictive abil-
ity, offers a useful potential alternative to the costly
and time-consuming experiments for determining
HCV inhibition. Biological activities of novel com-
pounds can be estimated by the produced MLR mod-
el. Furthermore, the produced QSAR model can be
used to screen existing databases or virtual libraries
in order to identify novel potent compounds. An at-
tempt in this direction was carried out. Synthesis of
the proposed chemistry driven small molecules using
the aforementioned virtual screening procedure and
experimental evaluation of their biological activity will
show if the method can be used as a general rational
drug discovery tool.
Acknowledgments

G. M. and A. A. would like to thank the Cyprus
Research Promotion Foundation (grants no. KINHT/
0505/03 and PLYPH/0506/25) for financial support.
References and notes

1. Ikegashira, K.; Oka, T.; Hirashima, S.; Noji, S.; Yama-
naka, H.; Hara, Y.; Adachi, T.; Tsuruha, J.-I.; Doi, S.;
Hase, Y.; Noguchi, T.; Ando, I.; Ogura, N.; Ikeda, S.;
Hashimoto, H. J. Med. Chem. 2006, 49, 6950.

2. Gopalsamy, A.; Chopra, R.; Lim, K.; Ciszewski, G.; Shi,
M.; Curran, K. J.; Sukits, S. F.; Svenson, K.; Bard, J.;
Ellingboe, J. W.; Agarwal, A.; Krishnamurthy, G.; Howe,
A. Y. M.; Orlowski, M.; Feld, B.; O’Connell, J.; Mansour,
T. S. J. Med. Chem. 2006, 49, 3052.
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