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Abstract—A linear quantitative structure–activity relationship (QSAR) model is presented for modeling and predicting induction of
apoptosis by 4-aryl-4H-chromenes. The model was produced by using the multiple linear regression (MLR) technique on a database
that consists of 43 recently discovered 4-aryl-4H-chromenes. Among the 61 different physicochemical, topological, and structural
descriptors that were considered as inputs to the model, seven variables were selected using the elimination selection-stepwise regres-
sion method (ES-SWR). The physical meaning of each descriptor is discussed. The accuracy of the proposed MLR model is illus-
trated using the following evaluation techniques: cross-validation, validation through an external test set, and Y-randomization.
Furthermore, the domain of applicability which indicates the area of reliable predictions is defined.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Novel medicines are typically developed using a trial
and error approach which is time-consuming and costly.
The application of quantitative–structure activity rela-
tionship (QSAR) methodologies to this problem has
the potential to decrease substantially the time and effort
required to discover new medicines or improve current
ones in terms of their efficacy. QSARs establish mathe-
matical relationships between physical, chemical,
biological, or environmental activities of interest
and measurable or computable parameters such as topo-
logical, physicochemical, stereo chemical or electronic
indices.1–6

Apoptosis is the vital process by which cells undergo
‘programmed cell death’ in various biological systems.
Diverse groups of molecules are involved in the apopto-
sis pathway. One set of mediators implicated in apopto-
sis belongs to the aspartate-specific cysteinyl proteases
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or caspases.7–9 Caspases, which are present in all cells
as latent enzymes, are a family of proteases that relay
a ‘‘doomsday’’ signal in a step-wise manner reminiscent
of signaling by kinases. Excessive apoptosis is responsi-
ble, at least in part, for a variety of diseases, for exam-
ple, liver disease,10 brain ischemia,11 myocardial
infraction,12 Huntington’s disease, and Alzheimer’s
disease.13

Recent reports indicate that many clinically useful
cytotoxic agents induce apoptosis in cancer cells.14,15

Compounds that induce apoptosis in cancer cells by tar-
geting the clinically validated tubulin/microtubule
system, while retaining activity in multi-drug-resistant
tumors, have the potential to offer new treatment op-
tions in the field of oncology.16 The 4-aryl-4H-chrom-
enes were found16 to a be promising series of novel
apoptosis inducers that could be developed into new
therapeutic anticancer agents.

To our knowledge only three attempts have been made
to build QSAR models in the general field of apoptosis.
Hansch17 presented a QSAR study containing a variety
of phenolic compounds causing apoptosis and later the
same scientific group presented a QSAR of apoptosis
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Nomenclature

F F ratio

hi leverage for the ith compound

k number of descriptors

LOO leave-one-out

L5O leave-five-out

n number of compounds

PRESS prediction error sum of squares

R2 correlation coefficient (coefficient of multiple
determination)

Q2 correlation coefficient for cross-validation

R2
cv;ext external correlation coefficient

RMS root mean squared error

SPRESS root mean squared error for cross-validation

SSY sum of squares of deviations of the

experimental values from their mean

xi the descriptor-row vector for the ith

compound

X the k · n matrix containing the k descriptor

values for each one of the n training

compounds
yexp,i experimental output value for the ith

compound

ypred,i predicted output value for the ith compound
�y average value for the output variable
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induction in various cancer cells.18 Selassie et al.19 inves-
tigated apoptosis-inducing effect of 51 substituted
caspase-mediated phenols in a murine leukemia cell line
(L1210). After a QSAR analysis, they found that the
strong dependence of caspase-mediated apoptosis on
mostly steric parameters suggests that the process is a
receptor-mediated interaction with caspases or mito-
chondrial proteins being the likely targets.

In this work, a series of 43 4-aryl-4H-chromenes16 with
apoptotic activity was studied. Sixty-one physicochemi-
cal and topological descriptors were examined in terms
of their efficacy to determine and predict the activity
of the investigated derivatives. The descriptors were cal-
culated using Topix (www.lohninger.com/topix.html)
and ChemSar which is included in the ChemOffice
(CambridgeSoft Corporation) suite of programs.
Among them, the most statistically significant descrip-
tors were selected using the Elimination Selection-Step-
wise Regression (ES-SWR) variable selection method.
The result of this study was the development of a new
linear QSAR model containing 7 variables. The pro-
posed methodology was validated using several strate-
gies: cross-validation, Y-randomization, and external
validation using division of the entire data set into train-
ing and test sets. Furthermore, the domain of applicabil-
ity which indicates the area of reliable predictions was
defined.
2. Materials and methods

2.1. Data set

In this QSAR study, 43 biological data from the work
of Kemnitzer et al. 16 work were used. The biological
activities of these 43 compounds were reported in the
same paper.16 The compounds are shown in Table 1,
where the letters a,b,c,d,e in the first column corre-
spond to the basic structures of 4-aryl-4H-chromenes,
depicted in Figure 1. In order to model and predict
the specific activity (apoptosis induction), 61 physico-
chemical constants, topological and structural descrip-
tors (Table 2) were considered as possible input
candidates to the model. All the descriptors were
calculated using ChemSar and Topix. Before the cal-
culation of the descriptors, the structures were fully
optimized using CS Mechanics and more specifically
MM2 force fields and the Truncated-Newton-Raphson
optimizer, which provide a balance between speed and
accuracy (Chemoffice Manual).

2.2. Stepwise multiple regression

As mentioned in the introduction, the ES-SWR algo-
rithm20 was used to select the most appropriate descrip-
tors. ES-SWR is a popular stepwise technique that
combines forward selection (FS-SWR) and backward
elimination (BE-SWR). It is essentially a forward selec-
tion approach, but at each step it considers the possibil-
ity of deleting a variable as in the backward elimination
approach, provided that the number of model variables
is greater than two.

2.3. Kennard and Stones algorithm

The Kennard and Stones algorithm21 has gained
increasing popularity for splitting data sets into two sub-
sets. The algorithm starts by finding 2 samples that are
the farthest apart from each other on the basis of the in-
put variables in terms of some metric, for example, the
Euclidean distance. These 2 samples are removed from
the original data set and put into the calibration data
set. This procedure is repeated until the desired number
of samples has been reached in the calibration set. The
advantages of this algorithm are that the calibration
samples map the measured region of the input variable
space completely with respect to the induced metric
and that the test samples all fall inside the measured re-
gion. According to Tropsha22 and Wu,23 the Kennard
and Stones algorithm is one of the best ways to build
training and test sets.

2.4. Cross-validation technique

Cross-validation is a popular technique used to explore
the reliability of statistical models. Based on this tech-
nique, a number of modified data sets are created by
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Table 1. Apoptosis inducing activity of 4-aryl-4H-chromenes in human breast cancer cells T47D

Compound R5 R6 R7 R8 A R 0 R00 R 0 00 EC50 (lM)

(observed)

log(1/EC50)

(observed)

log(1/EC50)

(predicted)

St. Res.

1a H H NMe2 H — — — — 0.073 1.137 1.0957 0.15

2a H H NH2 H — — — — 1.2 �0.079 0.0593 �0.49

3a H H NHEt H — — — — 0.33 0.481 0.5424 �0.22

4a H H NEt2 H — — — — 0.48 0.319 0.0763 1

5a H H OMe H — — — — 0.16 0.796 0.4845 1.08

6a H H OH H — — — — 5.8 �0.763 �0.4861 �1.05

7a H Me NHEt H — — — — 1.1 �0.041 0.4513 �1.73

8a H OCH2O H — — — — 0.21 0.678 0.412 1.02

9a H H NH2 Me — — — — 0.31 0.509 0.7245 �0.78

10a H H NMe2 H — — — — 0.019 1.721 1.5656 0.56

11b H H NH2 H — — — — 0.033 1.481 1.3957 0.29

12b H H NHEt H — — — — 0.014 1.854 1.4581 1.42

13b H H OMe H — — — — 0.017 1.769 1.7576 0.04

14b H H OEt H — — — — 0.064 1.194 1.3757 �0.63

15b H H OH H — — — — 0.13 0.886 1.2394 �1.19

16b H H Br H — — — — 0.14 0.854 0.5808 1.05

17b H H Cl H — — — — 0.16 0.796 1.0936 �1.16

18b H H NH2 NH2 — — — — 0.034 1.468 1.0719 1.39

19b H H NH2 Me — — — — 0.026 1.585 1.1786 1.4

20b H H Me Me — — — — 0.042 1.377 1.2653 0.47

21b H H OH NH2 — — — — 0.061 1.215 0.9701 0.85

22b H H OH OH — — — — 1.7 �0.230 0.6617 �3.12

23c — — — — C OMe OMe OMe 0.026 1.585 1.5246 0.22

24c — — — — C OMe H OMe 0.015 1.824 1.4017 1.48

25c — — — — C OMe H H 0.052 1.284 1.0919 0.68

26c — — — — C Br H H 0.052 1.284 1.4256 �0.5

27c — — — — C Cl H H 0.08 1.097 1.3418 �0.86

28c — — — — C NO2 H H 0.089 1.051 1.1589 �0.44

29c — — — — C H H H 0.36 0.444 0.3342 0.41

30c — — — — N H H H 0.17 0.769 0.5477 0.82

31c — — — — N OMe H H 0.047 1.328 0.9788 1.22

32d — — — — C OMe OMe OMe 0.049 1.310 1.5225 �0.76

33d — — — — C OMe H OMe 0.055 1.210 1.4817 �0.78

34d — — — — C OMe H H 0.11 0.959 1.2023 �0.85

35d — — — — C Cl H H 0.12 0.921 1.3373 �1.49

36d — — — — C NO2 H H 0.11 0.959 0.8805 0.32

37e — — — — C Cl OMe OMe 0.024 1.620 1.5488 0.25

38e — — — — C I OMe OMe 0.049 1.310 1.4411 �0.46

39e — — — — C Br OH OMe 0.023 1.638 1.7399 �0.38

40e — — — — C OMe H OMe 0.092 1.036 0.9424 0.33

41e — — — — C CN H H 0.39 0.409 0.5614 �0.58

42e — — — — C Br H H 0.15 0.824 0.7236 0.37

43e — — — — C NO2 H H 0.39 0.409 0.1638 1.04

Model predictions using Eq. 9.
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deleting in each case one or a small group (leave-some-
out) of objects.24–26 For each data set, an input–output
model is developed, based on the utilized modeling tech-
nique. The model is evaluated by measuring its accuracy
in predicting the responses of the remaining data (the
ones that have not been utilized in the development of
the model). In particular, the leave-one-out (LOO) and
the leave-five-out (L5O) procedures were utilized in this
study, which produce a number of models, by deleting
one or five objects, respectively, from the training set.
The maximum number of models produced by the
LOO procedure is equal to the number of available
examples n, while for the L5O procedure the maximum
number of models is equal to

n!
5!ðn�5Þ!. Prediction error

sum of squares (PRESS) is a standard index to measure
the accuracy of a modeling method based on the cross-
validation technique. Based on the PRESS and SSY
(sum of squares of deviations of the experimental values
from their mean) statistics, the Q2 and SPRESS values can
be easily calculated. The formulae used to calculate the
aforementioned statistics are presented below:
Q2 ¼ 1� PRESS

SSY
¼ 1�

Pn
i¼1ðyexp;i � ypred;iÞ

2

Pn
i¼1ðyexp;i � �yÞ2

ð1Þ

SPRESS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
ð2Þ
2.5. Y-randomization test

This technique ensures the robustness of a QSAR mod-
el.22,27 The dependent variable vector [log (1/EC50)] is
randomly shuffled and a new QSAR model is developed



Table 2. Physicochemical constants, topological and structural descriptors

ID Description Notation ID Description Notation

1 Molar refractivity MR 2 Diameter Diam

3 Partition coefficient (Octanol Water) ClogP 4 Molecular topological index TIndx

5 Principal moment of inertia Z PMIZ 6 Number of rotatable bonds NRBo

7 Principal moment of inertia Y PMIY 8 Polar surface area PSAr

9 Principal moment of inertia X PMIX 10 Radius Rad

11 Connolly accessible area SAS 12 Shape attribute ShpA

13 Connolly molecular area MS 14 Shape coefficient ShpC

15 Total energy TotE 16 Sum of valence degrees SVDe

17 LUMO energy LUMO 18 Total connectivity Tcon

19 HOMO energy HOMO 20 Total valence connectivity TVCon

21 Balaban Index BIndx 22 Wiener index Windx

23 Cluster count ClsC 24 Randic 0 Chi0

25 Randic 1 Chi1 26 Randic 2 Chi2

27 Randic 3 Chi3 28 Randic 4 Chi4

29 Randic information 0 ChiInf0 30 Randic information 1 ChiInf1

31 Randic information 2 ChiInf2 32 Randic information 3 ChiInf3

33 Randic information 4 ChiInf4 34 Kier-Hall 0 Ki0

35 Randic Mod ChiMod 36 Xu1 Xu1

37 Xu2 Xu2 38 Xu3 Xu3

39 Balaban Topological TopoJ 40 Topological radius TopoRad

41 Topological diameter TopoDia 42 Number of clusters NClusters

43 Number of rings NRings 44 Wiener Dim Wiener Dim

45 Bertz Bertz 46 AtomCompMean AtomCompMean

47 AtomCompTot AtomCompTot 48 Zagreb1 Zagreb1

49 Zagreb2 Zagreb2 50 Quadratic Quadr

51 ScHultz ScHultz 52 Kappa1 Kappa1

53 Kappa3 Kappa3 54 Kappa2 Kappa2

55 Wiener Distance WienerDistCode 56 Wiener Information InfWiener

57 DistEqMean DistEqMean 58 DistEqTotal DistEqTotal

59 InfMagnitDistTot InfMagnitDistTot 60 Polarity Polarity

61 Gordon Gordon
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Figure 1. Structures of 4-aryl-4H-chromenes.
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using the original independent variable matrix. The new
QSAR models (after several repetitions) are expected to
have low R2 and Q2 values. If the opposite happens then
an acceptable QSAR model cannot be obtained for the
specific modeling method and data.

2.6. Estimation of the predictive ability of a QSAR model

According to Tropsha22 the predictive power of a QSAR
model can be conveniently estimated by an external R2

cv;ext
R2
cv;ext ¼ 1�

Ptest

i¼1ðyexp;i � ypred;iÞ
2

Ptest

i¼1ðyexp;i � �ytrÞ2
ð3Þ
where �ytr is the averaged value for the dependent vari-
able for the training set. Furthermore the same
group22,28 considered a QSAR model predictive, if the
following conditions are satisfied:
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R2
cv;ext > 0:5 ð4Þ

R2 > 0:6 ð5Þ

ðR2 � R2
oÞ

R2
< 0:1 or

ðR2 � R02o Þ
R2

< 0:1 ð6Þ
0:85 6 k 6 1:15 or 0:85 6 k0 6 1:15 ð7Þ
Mathematical definitions of R2
o;R

02
o , k, and k

0
are based

on regression of the observed activities against predicted
activities and vice versa (regression of the predicted
activities against observed activities). The definitions
are presented clearly in Golbraikh et al.28 and are not
repeated here for brevity.
2.7. Defining model applicability domain

The domain of application22,29 of a QSAR model
must be defined if the model is to be used for screen-
ing new compounds. Predictions for only those com-
pounds that fall into this domain may be considered
reliable. Extent of Extrapolation29 is one simple ap-
proach to define the applicability of the domain. It
is based on the calculation of the leverage30 hi for
each chemical, for which QSAR model is used to
predict its activity:
hi ¼ xT
i ðX TX Þxi ð8Þ
In Eq. 8 xi is the descriptor-row vector of the query com-
pound and X is the k · n matrix containing the k
descriptor values for each one of the n training com-
pounds. A leverage value greater than 3k/n is considered
large and implies that the predicted response is the result
of a substantial extrapolation of the model and may not
be reliable.
Table 3. Correlation matrix for the seven selected descriptors

NClusters Bertz Quadr DPLL LUMO PSAr SVDe

NClusters 1

Bertz 0.856 1

Quadr 0.736 0.556 1

DPLL 0.109 0.217 �0.220 1

LUMO 0.109 �0.063 0.190 �0.455 1

PSAr 0.609 0.510 0.313 0.457 �0.144 1

SVDe 0.788 0.582 0.906 �0.028 �0.033 0.621 1

Path Cluster Path-Cluster Chain

Figure 2. Elementary molecular subgraphs.
3. Results and discussion

For the selection of the most important descriptors, the
aforementioned stepwise multiple regression technique
was used. The seven most significant descriptors
according to the ES-SWR algorithm are: the number
of clusters (NClusters), the Bertz’s complexity index
(Bertz), the quadratic (Quadr), the dipole length
(DPLL), the LUMO energy (LUMO), the polar sur-
face area (PSAr), and the sum of valence degrees
(SVDe).

The linear equation that models the apoptosis-inducing
activity of the 4-aryl-4H-chromenes in human breast
cancer cells T47D and corresponds to the aforemen-
tioned seven most significant descriptors is the
following:
logð1=EC50T47DÞ ¼ � 17:6ð�4:80Þ
� 0:534ð�0:25ÞNClusters

þ 0:229ð�0:06ÞBertz

� 0:00185ð�0:0005ÞQuadr

þ 0:294ð�0:079ÞDPLL

þ 2:31ð�0:57ÞLUMO

� 0:0654ð�0:015ÞPSAr

þ 0:340ð�0:089ÞSVDe

RMS ¼ 0:276; R2 ¼ 0:772; F ¼ 16:95;

Q2 ¼ 0:668; SPRESS ¼ 0:333; n ¼ 43 ð9Þ
The possibility of having included outliers in our data
set was investigated by calculating the standard resid-
uals (Table 2). Standardized residuals greater than 2
and less than �2 are usually considered large. Com-
pound with id 22b has standardized residual �3.12
and can safely be excluded from the data set as outli-
er. The new linear equation after the rejection of com-
pound 22b has a better predictive ability and is the
following:

logð1=EC50T47DÞ ¼ � 17:6ð�4:14Þ
� 0:521ð�0:22ÞNClusters

þ 0:234ð�0:053ÞBertz

� 0:00186ð�0:0004ÞQuadr

þ 0:267ð�0:069ÞDPLL

þ 2:22ð�0:50ÞLUMO

� 0:0630ð�0:013ÞPSAr

þ 0:337ð�0:077ÞSVDe

RMS ¼ 0:237; R2 ¼ 0:816; F ¼ 21:60;

Q2 ¼ 0:718; SPRESS ¼ 0:294; n ¼ 42 ð10Þ
Table 3 presents the correlation matrix, where it is clear
that the seven selected descriptors are not highly
correlated.



Table 4. Model predictions for 4-aryl-4H-chromenes using Eq. 11

Compound EC50 (lM)

(observed)

log(1/EC50)

(observed)

Training data

log(1/EC50)

(predicted)

Validation

data

log(1/EC50)

(predicted)

1a 0.073 1.137 1.122

2aa 1.2 �0.079 — 0.179

3a 0.33 0.481 0.551 —

4a 0.48 0.319 0.068 —

5a 0.16 0.796 0.600 —

6a 5.8 �0.763 �0.272 —

7aa 1.1 �0.041 — 0.507

8a 0.21 0.678 0.611 —

9a 0.31 0.509 0.877 —

10aa 0.019 1.721 — 1.514

11b 0.033 1.481 1.416 —

12ba 0.014 1.854 — 1.373

13b 0.017 1.769 1.724 —

14b 0.064 1.194 1.316 —

15b 0.13 0.886 1.294 —

16b 0.14 0.854 0.664 —

17b 0.16 0.796 1.142 —

18b 0.034 1.468 1.124 —

19b 0.026 1.585 1.241 —

20b 0.042 1.377 1.273 —

21b 0.061 1.215 1.089 —

22b 1.7 �0.230 — —

23c 0.026 1.585 1.556 —

24c 0.015 1.824 1.423 —

25c 0.052 1.284 1.122 —

26c 0.052 1.284 1.381 —

27ca 0.08 1.097 — 1.302

28c 0.089 1.051 1.182 —

29c 0.36 0.444 0.363 —

30c 0.17 0.769 0.558 —

31c 0.047 1.328 1.010 —

32d 0.049 1.310 1.454 —

33d 0.055 1.210 1.409 —

34d 0.11 0.959 1.140 —

35d 0.12 0.921 1.219 —

36d 0.11 0.959 0.843 —

37e 0.024 1.620 1.602 —

38e 0.049 1.310 1.496 —

39ea 0.023 1.638 — 1.796

40e 0.092 1.036 1.035 —

41e 0.39 0.409 0.612 —

42ea 0.15 0.824 — 0.7611

43e 0.39 0.409 0.292 —

a Validation set.
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A brief explanation of the seven descriptors that were
utilized in the produced QSAR model follows next:

Number of clusters (NClusters), the total number of
clusters in the module, is one of the four commonly used
subgraph types (Fig. 2).20 It is an attractive descriptor
due to its fast and easy calculation.

Bertz’s complexity index,20 the most popular complexity
index, takes into account both the variety of kinds of
bond connectivities and atom types of H-depleted
molecular graph.

Quadratic index20 is calculated by normalization of the
1st Zagreb index20 which is based on the vertex degree
of the atoms in the H-depleted molecular graph.

Dipole Length20 (DPLL) is the electric dipole moment
divided by the elementary charge. Electric dipole is a vec-
tor quantity which encodes displacement with respect to
the center of gravity of positive and negative charges in
a molecule.

Molecular orbital (MO) surfaces visually represent the
various stable electron distributions of a molecule.
According to Frontier Orbital Theory, the shapes and
symmetries of the highest-occupied and lowest-unoccu-
pied molecular orbitals (HOMO and LUMO) are crucial
in predicting the reactivity of a species and the stereo-
chemical and regiochemical outcome of a chemical
reaction.

Polar surface area (PSAr)20 is defined as the part of the
surface area of the module associated with oxygens,
nitrogens, sulfurs, and the hydrogens bonded to any of
these atoms.

Sum of valence vertex degrees (SVDe) is used in order to
take into account all valence electrons of the atoms. SVDe
is the sum of all dm values in a module as is defined by Kier
and Hall.31 dm encodes the electronic identity of the atom
in terms of both valence electron and core electron counts.
It is useful for characterizing heteroatoms and carbon
atoms involved in multiple bonds. Different groups that
can be used as possible substituents with the respective va-
lence vertex degrees (dm) are the following: Csp3, Csp2, and
Csp with dm = 4, Nsp3, Nsp2, and Nsp with dm = 5, Osp3, Osp2,
Ssp3, and Ssp2 with dm = 6, F, Cl, Br, and I with dm = 7.

According to the produced QSAR equation (Eq. 11) a
high value of the number of clusters, quadratic index,
and polar surface area contributes negatively to the
activity. Thus, designing models with fewer or no clus-
ters in the H-depleted molecular graph should improve
activity (Fig. 2). With the elimination of large substitu-
ents such as Phenyl and N-morpholino the quadratic
index is reduced and the activity is increased. This re-
mark agrees with the work of Kemnitzer et al.17 which
clearly indicated that small hydrophobic groups are pre-
ferred. Polar surface area (PSAr) is related to the hydro-
gen-bonding ability of the compounds. The presence of
oxygens, nitrogens, sulfurs, and the hydrogens bonded
to any of these atoms increases PSAr value.
On the other hand, a high value of the Bertz’s complexity
index, LUMO energy, dipole length, and the sum of va-
lence vertex degrees gives a positive contribution to the
activity. Bertz’s complexity index is the sum of ICPB and
ICPA which are the information contents related to the
bond connectivity and the atom-type diversity. Molecular
complexity increases with size, branching, vertex, and
weights. The term ICPB measures the complexity of a mol-
ecule given by the partition of equivalent connections sen-
sitive to branching, rings, and multiple bonds of the
module. The atom complexity term ICPA takes into ac-
count the presence of heteroatoms in a molecule.

Molecules with low LUMO energy values are more able
to accept electrons than molecules with high LUMO
energy values.20 The LUMO energy value is increased
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with the presence of electron donating groups (EDGs).
This remark also agrees with Kemnitzer et al.17 who rec-
ommend the introduction of EDGs such us NMe2, NH2,
NHEt, and OMe.

Dipole length encodes information about the charge dis-
tribution in molecules and is important for modeling po-
lar interactions.20 Large substituents decrease DPLL
value which is not desirable.

Eq. 11 indicates that a high value of the SVDe increases
the activity. Halogens have the largest dm values com-
pared to other groups. However, with the addition of
halogens in the module the activity is reduced, although
SVDe increases. This can be explained by noticing that
halogens are inductively electron-withdrawing groups
(EWGs) and thus lower the LUMO energy. The optimal
solution is to use as possible substituents the following:
NMe2, NH2, NHEt, and OMe. These groups have a
large dm value and are EDGs.

The predictive ability of the selected descriptors was
further explored, by dividing the full data set consist-
ing of 42 4-aryl-4H-chromenes into a training set of
35 compounds, and a validation set of 7 compounds.
The selection of the combinations in the training set
was made according to the Kennard and Stones
algorithm.

The combinations that constituted the training and val-
idation sets are clearly presented in Table 4. The valida-
tion examples are marked with a. The rest of the study
will focus on the model which is constructed from the
training set and will examine the predictive ability of
the produced model. Using the same seven descriptors
Figure 3. Experimental versus predicted values log(1/EC50) for the training
that were selected by the ES-SWR method, we devel-
oped a new MLR equation based on only the 35 training
examples:

logð1=EC50T47DÞ ¼ � 17:1ð�4:40Þ
� 0:461ð�0:23ÞNBranch

þ 0:215ð�0:06ÞBertz

� 0:00182ð�0:0005ÞQuadr

þ 0:251ð�0:072ÞDPLL

þ 2:15ð�0:512ÞLUMO

� 0:0602ð�0:014ÞPSAr

þ 0:327ð�0:082ÞSVDe

RMS ¼ 0:222; R2 ¼ 0:806; F ¼ 16:07;

Q2 ¼ 0:658; SPRESS ¼ 0:295; n ¼ 35 ð11Þ
Eq. 11 was used to predict the apoptosis-inducing
activity for both the training and validation examples.
Experimental versus predicted values are shown graph-
ically in Figure 3, where 95% confidence intervals on
the predicted values are indicated. The predicted apop-
tosis-inducing activities are also shown numerically in
the two last columns of Table 4. The R2 statistic for
the training set is equal to 0.806 as shown above,
while for the validation set the R2

pred statistic is
0.869.

The results illustrated once more that the linear MLR
technique combined with a successful variable selection
procedure is adequate to generate an efficient QSAR
model for predicting the apoptosis-inducing activity of
4-aryl-4H-chromenes.
and validation set with 95% confidence bounds.
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The proposed model Eq. 11 also passed the rest of the
tests that we utilized for illustrating its predictive ability
Eqs. 4–7:

R2
cv;ext ¼ 0:819 > 0:5

R2 ¼ 0:869 > 0:6

ðR2 � R2
oÞ

R2
¼ �0:3231 < 0:1;

ðR2 � R02o Þ
R2

¼ �0:2810 < 0:1

k ¼ 1:015 and k0 ¼ 0:922
Finally, it was important to note that the model was
quite stable to the inclusion–exclusion of compound as
measured by LOO and L5O correlation coefficient val-
ues, which are presented below:

Q2
LOO ¼ 0:658

Q2
L5O ¼ 0:6775

Q2
LOO and Q2

L5O are calculated using only the 35 training
examples. Calculation of the Q2

LOO statistic was per-
formed using all 35 models that result from excluding
one compound each time from the training examples,
while calculation of the Q2

L5O statistic was based on
1000 random exclusions of groups of examples.

The model was further validated by applying the
Y-randomization test. Several random shuffles of the
Y vector were performed and the results are shown
in Table 5. The low R2 and Q2 values indicate that
the good results in our original model are not due
to a chance correlation or structural dependency of
the training set.

It needs to be emphasized that no matter how robust,
significant, and validated a QSAR model may be, it can-
not be expected to reliably predict the modeled activity
for the entire universe of chemicals. The extrapolation
method was applied to the compounds that constitute
the test set. The leverages for the compounds 2, 7, 10,
12, 27, 39, and 42 that constitute the validation set
Table 5. R2 and Q2 values after several Y-randomization tests

Iteration R2 Q2

1 0.23 0.00

2 0.30 0.00

3 0.35 0.10

4 0.09 0.00

5 0.08 0.00

6 0.15 0.00

7 0.19 0.00

8 0.09 0.00

9 0.11 0.00

10 0.29 0.09
are, respectively, equal to 0.184, 0.179, 0.230, 0.219,
0.156, 0.327, and 0.286. None of the 7 compounds fell
outside from the domain of the model (warning leverage
limit 0.686).

The proposed method, due to the high predictive abili-
ty,22,32 could be a useful aid to the costly and time-con-
suming experiments for determining the apoptosis-
inducing activity of 4-aryl-4H-chromenes. The method
can also be used to screen existing databases or virtual
combinations in order to identify derivatives with de-
sired activity. In this case, the applicability domain will
serve as a valuable tool to filter out ‘‘dissimilar’’
combinations.
4. Conclusion

The successful results of this study led to the conclu-
sion that apoptosis-inducing activity can be successful-
ly modeled with physicochemical constants and
structural descriptors. The validation procedures uti-
lized in this work (separation of data into independent
training and validation sets, Y-randomization) illus-
trated the accuracy and robustness of the produced
QSAR model not only by calculating its fitness on sets
of training data, but also by testing the predictive abil-
ity of the model. The proposed method, due to the
high predictive ability, offers a useful alternative to
the costly and time-consuming experiments for deter-
mining apoptosis-inducing activity of 4-aryl-4H-
chromenes.
Acknowledgments

A.A. thanks Cyprus Research Promotion Foundation
(Grant No. PENEK/ENISX/0603/05) and A.G. Leven-
tis Foundation for its financial support. G.M. thanks
the Greek State Scholarship Foundation for a doctoral
assistantship.
References and notes

1. Melagraki, G.; Afantitis, A.; Sarimveis, H.; Igglessi-
Markopoulou, O.; Alexandridis, A. Mol. Div. 2006.
doi:10.1007/s11030-005-9008-y.

2. Melagraki, G.; Afantitis, A.; Makridima, K.; Sarimveis,
H.; Igglessi-Markopoulou, O. J. Mol. Model. 2006, 12,
297.

3. Melagraki, G.; Afantitis, A.; Sarimveis, H.; Igglessi-
Markopoulou, O.; Supuran, C. T. Bioorg. Med. Chem.
2006, 14, 1108.

4. Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P.
A.; Markopoulos, J.; Igglessi-Markopoulou, O. Mol. Div.
2006. doi:10.1007/s11030-005-9012-2.

5. Leonard, J. T.; Roy, K. QSAR Comb. Sci. 2004, 23, 387.
6. Netzeva, T.; Aptula, A. O.; Chaudary, S. H.; Duffy, J. C.;
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